
Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	1	 22	December	2017	

	

	
	

	

	

	

	

	

Decoding Repton
	

	

Compiled	by	Gerald	J	Holdsworth	

	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	2	 22	December	2017	

	

Contents	
Introduction	...	5	

Conventions	and	Nomenclature	...	6	
Keywords	..	6	
Numeric	Notation	...	6	
Endian	Notation	..	6	

How	The	Maps	Are	Stored	..	7	
Method	One	..	7	
Method	Two	...	7	

How	The	Graphics	Are	Stored	...	8	
BBC	Micro/Acorn	Electron	...	8	
Commodore	64	...	8	
ZX	Spectrum	..	8	
Archimedes/RISC	OS	...	9	

BBC	and	Electron	Repton	..	10	
File	Format	(BBC)	..	10	
File	Format	(Electron)	..	10	
Characters	..	10	
Maps	..	11	
Map	Characters	..	11	
Passwords	...	11	
Palette	..	11	
Time	Limits	...	11	

Desktop	Repton	..	12	
Encryption	Key	..	12	
File	Layout	..	13	
Characters	..	13	

Archimedes	and	RiscPC	Repton	..	14	
File	Layout	..	14	
Characters	..	14	
Maps	..	14	
Time	Limits	...	14	
Passwords	...	14	
Palette	..	14	

BBC	and	Electron	Repton	2	...	15	
File	Layout	(BBC)	...	15	
File	Layout	(Electron,	DFS	format)	...	15	
Level	Data	...	15	
Puzzle	Piece	Definitions	...	16	
Transporters	...	16	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	3	 22	December	2017	

	

Start	Position	..	16	
Palette	..	16	
Game	Sprites	and	Puzzle	Piece	Sprites	...	16	

Desktop	Repton	2	...	18	
Encryption	Key	..	18	
File	Format	...	19	
Co-ordinates	...	19	
Maps	..	19	
Edges	..	19	
Palette	..	19	
Puzzle	Pieces	...	19	
Transporters	...	19	
Characters	..	19	

Archimedes	and	RiscPC	Repton	2	..	21	
File	Format	(Archimedes)	..	21	
File	Format	(RiscPC)	..	21	
Maps	..	21	
Edges	..	21	
Characters	..	21	
Transporters	...	21	
Puzzle	Pieces	...	21	
Palette	..	22	

Repton	3	...	23	
File	Layout	(BBC/Electron)	...	23	
File	Layout	(Archimedes/Desktop	Repton)	...	23	
File	Layout	(Commodore)	..	23	
Passwords	...	24	
Edit	Codes	...	24	
Time	Limits	...	24	
Transporters	...	24	
Colour	Palette	...	25	
Maps	..	25	
Characters	..	25	
Competition	Codes	..	25	

Repton	Infinity	...	27	
G.game	format	...	27	
eG.game	format	...	27	
E.game	file	format	..	28	
M.game	format	..	28	
S.game	file	format	..	28	
eS.game	file	format	..	28	
O.game	file	format	...	29	
T.game	file	format	..	31	
Passwords	...	32	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	4	 22	December	2017	

	

Sinclair	ZX	Spectrum	Repton	Mania	33	
DSK	and	Memory	Usage	..	33	
Maps	..	34	
Transporters,	Puzzle	Pieces	and	Spirits	..	34	
Z80	format	..	35	

EGO:	Repton	4	..	36	
Passwords	...	36	
Level	data	...	36	

PC	Repton	3	Graphics	...	37	
Windows	Bitmap	Layout	...	37	

Repton	The	Lost	Realms	...	38	
File	Layout	..	38	
Encoding	...	38	
Screen	Data	..	38	
Character	Data	...	38	
Characters	..	38	

Clones	and	Similar	Games:	Ripton	..	40	
Characters	..	40	
Maps	..	40	
Palette	..	40	
Passwords	...	40	
Time	limits	..	40	

Clones	and	Similar	Games:	HW	Repton	3	41	
File	Status	...	41	
EDIT	Format	..	41	
LOCK	format	...	41	
Lock	Password	..	41	
LOCKed	Maps	..	41	
Final	Notes	..	42	
Graphics	...	42	

Clones	and	Similar	Games:	Bonecruncher	43	
BONE2/BONE_2	..	43	
SCREENx	...	44	
Sprite	order	...	44	
Map	tile	to	sprite	Lookup	Table	...	45	

Useful	Programs	...	46	
Archimedes	and	Desktop	Repton	3	Decoder	..	46	
HW	Repton	3	Decoder	...	47	

Acknowledgements	..	50	

	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	5	 22	December	2017	

	

Introduction	
Repton	has	been	described	as	“the	thinking	man’s	arcade	game”	and	was	originally	
published,	 for	 the	 BBC	 Micro	 and	 Acorn	 Electron,	 in	 1985	 by	 Superior	 Software.	
Written	by	15-year-old	Tim	Tyler,	this	quickly	became	a	smash	hit	and	was	followed	
by	Repton	2.	 Later	on,	Repton	3	 followed,	and	 then	Repton	 Infinity	before	Repton	
moved	onto	the	Archimedes	with	EGO:	Repton	4.	Recently,	Retro	Software	released	
Repton:	The	Lost	Realms,	with	a	new	set	of	screens	to	follow	in	the	near	future.	

Superior	 Software,	 Superior	 Interactive,	 Retro	 Software	 and	 Alligata	 have	 also	
published	 various	 other	 versions,	 for	 the	 Acorn	 Atom,	 Sinclair	 Spectrum,	
Commodore	64,	Acorn	Archimedes	&	RISC	PC,	and	Microsoft	Windows.	

This	 is	 a	 guide	 to	 the	 various	 formats	 of	 file	 used	 by	 the	 many	 incarnations	 of	
Repton,	 or	 the	 arrangement	 of	 the	map	 and	 sprite	 data	within	 the	 code.	What	 it	
does	not	cover	are	the	PC	Repton	formats,	except	for	the	graphics.	The	following	are	
covered:	

• BBC	Micro	Repton,	Repton	2,	Repton	3	and	Repton	Infinity	
• Acorn	Electron	Repton,	Repton	2,	Repton	3	and	Repton	Infinity	
• Sinclair	Spectrum	Repton	and	Repton	2	
• Commodore	64	Repton	3	
• Acorn	Archimedes	Repton,	Repton	2	and	Repton	3	
• Desktop	Repton	1,	2,	and	3	
• PC	Repton	3	graphics	

In	 addition,	 I	 have	 researched	 and	 present	 here	 some	 other	 formats	 for	 games	
similar	to	the	Repton	series:	

• Ripton	 (from	A&B	 Computing),	which	was	 a	 direct	 copy	 of	 Repton,	 for	 the	
BBC	Micro	

• Harry	Wood’s	Repton	3,	which	was	Harry’s	attempt	at	a	PC	version	of	Repton	
3,	before	Superior	Interactive	produced	their’s	

• Bonecruncher,	 a	 different	 game	 entirely,	 but	 very	 similar	 gameplay,	 from	
Superior	Software	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	6	 22	December	2017	

	

Conventions	and	Nomenclature	
The	guide	is	written	from	the	viewpoint	of	programming	in	C++,	although	I	actually	
program	 in	Delphi	 (Pascal).	 As	 Repton	 is	mainly	 from	 the	Acorn	world,	most	 code	
would	be	shown	as	BBC	BASIC	V	or	ARM	assembly.	

Keywords	
Throughout	this	guide,	I	have	used	some	common	keywords:	
XOR:	bitwise	eXclusive	OR	
AND:	bitwise	AND	
OR:	bitwise	OR	
Also,	in	BBC	BASIC	sections,	EOR	is	the	same	as	XOR.	

Numeric	Notation	
I	have	also	used	C++	conventions	to	represent	hexadecimal	notation…i.e.	0x10	is	10	
in	hexadecimal	(which	is	equivalent	to	16	in	decimal).	
Bits	and	bytes	are	counted	from	0,	with	bit	0	being	the	least	significant,	or	right	most	
bit.	Bytes,	on	the	other	hand,	are	counted	as	you	encounter	them.	So	byte	0	would	
be	the	left	most	byte	(which	is	normally	the	most	significant	byte).	

Endian	Notation	
With	a	hex	number	of	0x1234,	0x12	would	be	considered	the	MSB	(most	significant	
byte),	 while	 0x34	 would	 be	 the	 LSB	 (least	 significant	 byte).	 This	 would	 be	
represented,	 and	 stored	 in	 these	 data	 files,	 as	 LSB/MSB.	 Therefore,	 you	 would	
encounter	them	as	0x34,	0x12	–	this	is	known	as	“Little	Endian”.	If	it	were	MSB/LSB,	
then	this	is	known	as	“Big	Endian”,	and	will	be	noted	as	such.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	7	 22	December	2017	

	

How	The	Maps	Are	Stored	
The	level	data,	or	maps,	are	stored	as	a	common	format	on	all	platforms	covered	by	
this	book,	except	for	EGO:	Repton	4,	which	has	a	different	format	completely	(as	it	
was	originally	another	game	entirely,	and	had	 it’s	name	and	characters	changed	to	
be	another	Repton).	

The	 size	of	 each	 level	 changes	between	 levels	 (Repton	and	Repton	2	being	32x32,	
and	 Repton	 3	 being	 24x28	 characters),	 but	 the	 actual	 storage	 is	 the	 same.	 Eight	
characters	are	packed	into	five	bytes,	which	basically	allows	for	up	to	32	characters	
on	the	maps.	In	reality,	there	are	more	characters,	but	the	extras	are	the	animation	
ones	which	do	not	need	to	be	 included	on	a	map.	This	said,	there	are	actually	two	
variations	on	this	method.	

Method	One	
The	eight	characters	are	placed	on	the	map	as	you	would	read,	i.e.	from	left	to	right.	
The	bits	that	make	up	the	character	number	0-31	are	split	thus:	

Byte	0	is	ptr+0;	Byte	1	is	ptr+1;	etc.	

Byte	4	 Byte	3	 Byte	2	 Byte	1	 Byte	0	
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

	
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

Char	7	 Char	6	 Char	5	 Char	4	 Char	3	 Char	2	 Char	1	 Char	0	

Char	0	is	x+0,y;	Char	1	is	x+1,y;	etc.	and	bits	5-7	of	each	character	are	0.	

Method	Two	
Byte	0	is	ptr+0;	Byte	1	is	ptr+1;	etc.	

Byte	0	 Byte	1	 Byte	2	 Byte	3	 Byte	4	
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

	
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

Char	0	 Char	1	 Char	2	 Char	3	 Char	4	 Char	5	 Char	6	 Char	7	

	
	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	8	 22	December	2017	

	

How	The	Graphics	Are	Stored		
How	 the	 graphics	 are	 stored	 will	 depend	 on	 the	 target	 machine.	 With	 the	 8	 bit	
machines,	 the	 character	 sizes	 are	 16x32	 pixels	 (12x24	 for	 Electron	 Repton	 3,	 and	
8x16	 for	Electron	Repton	1,	2	and	 Infinity).	The	Archimedes	and	RISC	OS	are	much	
simpler,	 although	 the	 character	 sizes	 are	 now	 32x32	 pixels,	 as	 they	 have	 more	
colours	to	play	with.	Each	4	bits	represent	a	single	pixel,	so	you	can	get	2	pixels	from	
a	 single	byte,	and	each	pixel	has	a	possible	16	colours	 to	choose	 from.	The	Hi-Res	
format	 of	 Desktop	 Repton	 3	 goes	 even	 further,	 not	 only	 doubling	 the	 size	 of	 the	
characters	 (to	 64x64),	 but	 also	 doubling	 the	 bit	 storage.	 Each	 byte	 represents	 a	
single	pixel	(one	of	256	possible	colours).	

This	format	of	storing	maps	and	characters	changed	with	Repton:	The	Lost	Realms,	
although	 the	 ‘retro’	 graphics	 for	 the	 PC	 version	 remained.	 However,	 the	 high-
resolution	graphics	 for	 the	PC	utilised	64x64px	8bpp	Windows	Bitmap	 format	 (the	
r3g	 files	 being	 a	 series	 of	 Windows	 Bitmaps	 with	 the	 headers	 and	 palette	
information	stripped	off).	

BBC	Micro/Acorn	Electron	
The	 BBC	Micro	 and	 Acorn	 Electron	 versions	 of	 the	 games	 all	 run	 in	MODE	 5	 and,	
hence,	match	the	way	that	the	MODE	5	memory	is	arranged.	Each	two	bits	of	data	
make	up	a	single	pixel	allowing	any	one	of	the	4	MODE	5	colours:	

Pixel	0	 Pixel	1	 Pixel	2	 Pixel	3	

	

Bit	7	 Bit	6	 Bit	5	 Bit	4	 Bit	3	 Bit	2	 Bit	1	 Bit	0	

Commodore	64	
The	Commodore	uses	a	different	arrangement	of	bits	to	pixels:		

Pixel	0	 Pixel	1	 Pixel	2	 Pixel	3	

	

Bit	7	 Bit	6	 Bit	5	 Bit	4	 Bit	3	 Bit	2	 Bit	1	 Bit	0	

ZX	Spectrum	
The	ZX	 Spectrum	uses	 separate	data	 to	define	 the	graphics.	 The	pixel	 data	 can	be	
either	foreground	(bit	is	set)	or	background	(bit	is	clear).	Each	byte,	in	the	pixel	data,	
will	therefore	represent	8	pixels.	Then	each	8x8px	block	is	described	by	a	single	byte:	
bit	7	=	Flashing	
bit	6	=	Bright	
bits	5,4	&	3	=	Paper	(background)	
bits	2,1	&	0	=	Ink	(foreground)	
The	3	bit	colour	definitions	are	described	as	Green,	Red	then	Blue	for	bits	2,	1	and	0	
respectively.	This	will	make	the	colours:	
0:	Black	 1:	Blue		 2:	Red	 	 3:	Magenta	
4:	Green	 5:	Cyan		 6:	Yellow	 7:	White	
Combined	with	the	Bright	flag,	this	will	give	a	total	of	16	colours.	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	9	 22	December	2017	

	

The	ZX	Spectrum	screens	have	a	resolution	of	256x192	pixels.	The	memory	is	made	
up	thus:	
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 1 0 Y7 Y6 Y2 Y1 Y0 Y5 Y4 Y3 X4 X3 X2 X1 X0
The 010xxxxxxxxxxxxx is the base address of 0x4000 (start of screen memory)

The	Y	co-ordinates	are	in	pixels	down,	while	the	X	co-ordinates	are	in	bytes	across.	
The	screen	memory	is	from	0x4000	to	0x57FF,	with	the	colour	data	from	0x5800	to	
0x5AFF.	

Archimedes/RISC	OS	
For	the	two	pixels	per	byte	method	used	with	Archimedes	Repton	1,	2,	and	3;	RiscPC	
Repton	2;	&	Desktop	Repton	1,	2,	and	3	(low	res),	the	byte	is	split	in	two	with	bits	0-3	
being	the	first	pixel,	and	4-7	being	the	adjacent	pixel.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	10	 22	December	2017	

	

BBC	and	Electron	Repton	
Data	is	spread	across	the	two	files	REPTON1	and	REPTON2	on	the	BBC.	The	majority	
of	the	data	is	in	the	second	file,	whilst	a	minimal	amount	is	to	be	found	in	the	first.	
All	of	the	data	for	the	Electron	versions	must	be	XORed	with	0xFF	first.	

File	Format	(BBC)	
Offset	 Description	
File:	REPTON1	
0x1702	 Game	playing	sprites	tile	lookup	
0x1754	 Palette	
0x17BF	 Small	map	characters	tile	lookup	
File:	REPTON2	
0x1C58	 Passwords	
0x1EC0	 Sprite	definitions	
0x2F00	 Map	sprite	tile	offsets	
0x3100	 Maps	

File	Format	(Electron)	
Offset	 Description	
0x00E9	 Palette	
0x00F5	 Small	map	characters	tile	lookup	
0x1B70	 Passwords	
0x2500	 Sprite	definitions	
0x2AC0	 Map	sprite	tile	offsets	
0x2C00	 Maps	

Characters	
Sprites	are	made	up	of	a	number	of	tiles.	These	tiles,	as	sprites,	are	stored	as	4x8px	
tiles,	of	which	there	are	520	(224	in	Electron)	of	them:	

	
There	 is	 then	 a	 lookup	 table	 to	 define	 which	 tiles	 make	 up	 the	 appropriate	
characters,	of	which	there	are	52.	As	the	characters	are	ultimately	16x32px	(8x16px	
for	Electron),	this	means	16	tiles	(4x4),	or	4	tiles	(2x2)	for	Electron,	make	up	a	single	
character.	The	format	of	the	sprites	is	Method	One	as	described	on	page	7.	

The	game	playing	sprites	on	the	BBC	has	direct	pointers	to	the	top	left	tile.	However,	
this	only	has	10	of	the	14	sprites,	and	they	are	all	4x4.	The	first	location	contains	the	
LSB,	while	the	second	contains	the	MSB.	You	will	need	to	add	0x0F00	for	the	offset	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	11	 22	December	2017	

	

into	 the	 file	 (as	 the	 address	 given	 is	 the	 direct	 memory	 address	 when	 the	 file	 is	
loaded	into	memory).	

Maps	
These	 are	 stored,	 as	 Method	 One,	 described	 on	 page	 7,	 to	 make	 up	 the	 32x32	
character	maps,	of	which	there	are	12	in	total,	making	each	level	a	total	of	640	bytes	
each.	 One	 thing	 to	 note	 is	 that	 Repton	 does	 not	 actually	 appear	 on	 the	 level	
definitions,	as	he	begins	from	the	same	spot	on	every	level	(being	at	5,5).	

Map	Characters	
These	 are	 stored	 the	 same	 as	 the	 main	 characters,	 with	 the	 tile	 lookup	 pointing	
towards	where	 the	 definition	 is.	 This	 time,	 the	map	 characters	 only	 take	 up	 1	 tile	
each.	

Passwords	
The	passwords	are	stored	unencrypted,	and	are	a	maximum	of	12	characters	 long,	
terminated	by	Carriage	Return	(13	or	0x0D).	

Palette	
The	palette	 is	 simply	1	byte	per	 screen,	with	each	byte	 representing	 a	BBC	 colour	
(see	page	25),	which	will	redefine	logical	colour	1	(Repton’s	trousers).	

Time	Limits	
The	time	limits	for	all	screens	in	Repton	are	set	at	6000.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	12	 22	December	2017	

	

Desktop	Repton	
The	data	file	for	Desktop	Repton	is	encoded	using	data	from	the	sprite	file.	This	file	
itself	has	had	some	encryption	done	to	it	to	produce	the	final	key,	which	is	then	used	
to	decrypt	the	data.	

As	this	file,	encrypted,	can	be	saved	and	used	as	a	key,	it	seems	sensible	to	use	the	
code	 found	within	 the	Desktop	Repton	directory	 structure	 to	 encrypt	 it	 once,	 and	
saved	for	future	use.	

Encryption	Key	
BBC	BASIC	program	to	produce	a	key	to	decode	the	maps:	
REM Program to process the Desktop Repton 1 Sprite file
REM for use as a key to decode the maps
REM
REM This code is taken directly from the DR1 main program
:
ONERRORREPORT:PRINT" at line ";ERL:END
savepath$="ADFS::RISCOS4.$"
:
REM First we'll extract the code
REM This is stored as code length, code, code function names and pointers
Z%=OPENIN"<Repton$Dir>.Resources.Code"
INPUT#Z%,A%
DIMcode% A%
size=A%
SYS"OS_GBPB",4,Z%,code%,A%TO,,,A% : REM Read bytes from current pointer
:
REM Now we need to load the Sprite file in and process it
SYS"OS_File",17,"<Repton$Dir>.Resources.Sprites" TO,,,,D% : REM Get file length
D%+=48+655360
DIM sprs% D%
!sprs%=D%
SYS"OS_File",16,"<Repton$Dir>.Resources.Sprites",sprs%+4 : REM Load file into sprs%+4
:
REM These are the functions within the code that we'll be using
sprtab=&C74+code%
process=&1590+code%
map=&500+code%
DIM map% 1600
B%=map%
!map=B%
sprtab!-4=sprs%
FORn%=0TO50
 SYS"OS_SpriteOp",256+24,sprs%,STR$n% TO,,A
 A%+=&2C
 sprtab!(n%*4)=A%
 CALLprocess
 IF A%!-8>A%!-12 THEN A%+=512:CALLprocess
NEXT
:
REM Now we save the key to a file
SYS"OS_File",0,savepath$+".DR1Key",,,sprs%+4,sprs%+18004
PRINT"Desktop Repton 1 decode key saved in "savepath$

You	 will	 then	 need	 to	 use	 this	 key	 to	 decrypt	 the	 file,	 as	 shown	 in	 the	 following	
Pascal	code.	For	the	crypt	procedure:	
procedure crypt(var data,enc_data: array of Char;ptr,enc_ptr,amt,seed: Integer);
data	is	the	datablock	where	the	file	is	loaded	into.	
enc_data	is	the	datablock	for	the	above	key.	
ptr	is	the	pointer	into	data	that	will	be	decoded.	
enc_ptr	is	the	pointer	into	enc_data	that	will	be	used.	
amt	is	the	size	of	data	that	needs	decoding.	
seed	is	the	decryption	seed.	

For	the	initial	decryption,	which	is	done	over	the	entire	file,	the	seed	is	the	last	word	
(four	bytes)	of	the	data	block	ORed	with	itself	shifted	left	16	times,	or:	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	13	 22	December	2017	

	

seed=seed OR (seed<<16)

After	the	entire	file	has	been	decrypted,	you	will	then	need	to	decrypt	the	password	
and	author	area.	
begin
 temp:=Ord(data[size-4])+Ord(data[size-3])shl 8+Ord(data[size-2])shl 16+Ord(data[size-
1])shl 24;
 temp:=temp OR (temp shl 16);
 getResource('DR1Decode',spr_data); {Get the decryption key}
 crypt(data,spr_data,0,12,size-4,temp);
 for screen:=0 to levels-1 do
 crypt(data,data,(((levels*1024)+levels+3)AND-4) +(screen*68),screen*1024,68,29);
end;
procedure crypt(var data,enc_data: array of Char;ptr,enc_ptr,amt,seed: Integer);
var
 c,d: Integer;
begin
 repeat
 c:=Ord(enc_data[enc_ptr])+Ord(enc_data[enc_ptr+1])shl 8+Ord(enc_data[enc_ptr+2])shl
16+Ord(enc_data[enc_ptr+3])shl 24;
 enc_ptr:=enc_ptr+4;
 d:=Ord(data[ptr])+Ord(data[ptr+1])shl 8+Ord(data[ptr+2])shl 16+Ord(data[ptr+3])shl
24;
 c:=seed+(seed*c);
 d:=d+seed;
 d:=d XOR ((c shr 12)+(c shl 20));
 d:=d XOR ((c shr 20)+(c shl 12));
 d:=d-seed;
 data[ptr+3]:=chr((d AND $FF000000)shr 24);
 data[ptr+2]:=chr((d AND $00FF0000)shr 16);
 data[ptr+1]:=chr((d AND $0000FF00)shr 8);
 data[ptr+0]:=chr(d AND $000000FF);
 ptr:=ptr+4;
 amt:=amt-4;
 Until amt=0;
end;

File	Layout	
Size	of	file	is	(((levels	x	1093)	+	7)	AND	-4)	
Offset	 	 	 	 Length		 Description	
0x0000		 	 	 0x400*levels	 Maps	(32x32	chars)	
((levels*0x400)+3)AND-4	 0x44*levels	 Info	block	(see	below),	encoded	twice	
length-4	 	 	 0x04	 	 Encryption	seed	
Level	Info	Block	
0x00	 	 	 	 0x20	 	 Password	
0x20	 	 	 	 0x20	 	 Author	
0x40	 	 	 	 0x04	 	 Time	Limit	

Characters	
The	characters	used	for	Desktop	Repton	are	stored	as	standard	RISC	OS	sprites	in	a	
separate	file,	Resources.Sprites.	You	will	need	to	refer	to	the	RISC	OS	Programmer’s	
Reference	Manual	for	details	on	how	these	are	stored.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	14	 22	December	2017	

	

Archimedes	and	RiscPC	Repton	
File	Layout	
Offset	 Length	 Description	
0x03A44	 0x01080	 Map	Characters	
0x04AC4	 0x01E00	 Maps	
0x068E4	 0x1A000	 Characters	
0x208E4	 0x00084	 Passwords	
0x20968	 0x00300	 Palette	
0x20C74	 0x00030	 Time	Limits	

Characters	
The	characters	to	display	the	map	are	16	x	16px,	with	2px	per	byte.	This	means	each	
character	is	stored	in	128	bytes,	of	which	there	are	33	of	them.	The	characters	used	
for	playing	are	64	x	64px,	and	again,	2px	per	byte.	Each	character	uses	2048	bytes	of	
space	of	which	there	are	52	of	them.	Each	pixel	is	a	colour	number,	referenced	into	
the	palette	data.	

Maps	
These	 are	 stored,	 as	 Method	 One,	 described	 on	 page	 7,	 to	 make	 up	 the	 32x32	
character	maps,	of	which	there	are	12	in	total,	making	each	level	a	total	of	640	bytes	
each.	

Time	Limits	
These	are	stored	as	4	bytes	each:	LSB,	MSB,	0x00,	0x00.	Note,	that	these	are	not	all	
6000,	as	BBC/Electron	Repton.	

Passwords	
The	passwords	are	stored	as	11	bytes	per	 level	 for	each	of	 the	12	 levels.	They	are	
encoded	using	the	map	data:	
character:	ASCII	value	of	each	character	
x:	offset	into	the	password	(0..10)	
passwords[]:	password	data	for	screen	
mapdata[]:	map	data	for	screen	
character = (passwords[x] XOR mapdata[47 * (x+1)]) AND 0x1F OR 64

then,	if	character>13:	
character = character AND 0xDF

finally,	if	character	is	an	'@'	then	replace	for	ASCII	13	

Palette	
The	values	stored	at	this	location	are	the	red,	green	and	blue	components	for	each	
of	the	16	colours	per	level.	They	are	stored	0x10,	RR,	GG,	and	BB.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	15	 22	December	2017	

	

BBC	and	Electron	Repton	2	
The	 BBC	 file	 D.RepB	 needs	 to	 be	 XORed	 with	 0x66	 to	 get	 any	 useable	 data.	 The	
Electron	version	of	Repton	2	 is	split	 into	two	files	on	the	DFS	version,	while	on	the	
ADFS	version	it	is	a	single	file.	

File	Layout	(BBC)	
Offset	 Description	
0x014A	 Sprite	sizes	
0x0169	 Sprite	position	offsets	(LSB)	
0x0188	 Sprite	position	offsets	(MSB)	
0x01C5	 Palette	
0x0FD2	 Start	Position	(x)	
0x0FD6	 Start	Position	(y)	
0x1B00	 Level	Data	offsets	
0x1B40	 Transporters	
0x1CF8	 Puzzle	Piece	Definitions	
0x1DA0	 Sprite	Tile	offsets	
0x2240	 Sprite	and	Puzzle	Piece	Definitions	
0x2680	 Palette	
0x3500	 Level	Definitions	

File	Layout	(Electron,	DFS	format)	
File	 Offset	 Description	
ReptonA	 0x187A	 Sprite	sizes	
ReptonA	 0x1899	 Sprite	position	offsets	(LSB)	
ReptonA	 0x1939	 Sprite	position	offsets	(LSB)	
ReptonA	 0x1958	 Sprite	position	offsets	(MSB)	
ReptonA	 0x1AB3	 Palette	
ReptonB	 0x0B60	 Start	Position	(x)	
ReptonB	 0x0B64	 Start	Position	(y)	
ReptonB	 0x1600	 Sprite	and	Puzzle	Piece	Definitions	
ReptonB	 0x1720	 Puzzle	Piece	Sprites	
ReptonB	 0x18A0	 Puzzle	Piece	Definitions	
ReptonB	 0x1950	 Transporters	
ReptonB	 0x1B00	 Level	Data	offsets	
ReptonB	 0x1B40	 Text	characters	
ReptonB	 0x1E40	 Sprite	Tile	offsets	
ReptonB	 0x24C0	 Palette	
ReptonB	 0x2900	 Level	Definitions	

Level	Data	
The	 offset	 data	 is	 4	 bytes	 per	 level,	 with	 each	 byte	 being	 an	 offset	 into	 the	 level	
definitions:	addr+(offset	x	160).	Each	 level	 is	32x32,	and	each	offset	representing	8	
rows	of	a	map.	

Character	 numbers	 are	 shared	 on	 three	 occasions	 –	 the	 Finish	 character	 only	
appears	on	Screen	A,	while	on	the	other	screens	 it	 is	a	spirit;	and	transporters	and	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	16	 22	December	2017	

	

puzzle	pieces	do	not	appear	on	the	 level	data,	so	you	will	need	to	 fall	back	on	the	
respective	data	(see	below).	

Any	 offset	 byte	 of	 0x80	 or	 more	 is	 eight	 rows	 of	 repeating	 character,	 the	 least	
significant	four	bits	indicating	the	character	number	(0=blank,	6=diamond,	etc.)	

The	level	definitions	are	uses	Method	One,	as	described	on	page	7.	

Puzzle	Piece	Definitions	
These	are	stored	in	puzzle	piece	order	(as	put	together	using	the	sprite	data	below),	
and	each	one	is	stored	as	four	bytes:		screen,	x,	y,	and	location	on	screen	A.	You	will	
need	to	AND	the	screen	byte	with	0x0F.	There	are	42	puzzle	pieces.	The	final	byte,	
location	on	 screen	A,	 is	 a	pair	of	 co-ordinates	with	 the	 x	being	bits	0-3,	 and	 the	y	
being	bits	4-7.	This	is	an	offset	from	position	10,24.	

Transporters	
These	are	stored	as	six	bytes:	source	screen,	x,	and	y	(i.e.	where	the	transporter	is)	
and	destination	screen,	x,	y	(i.e.	where	it	takes	Repton	to).	There	are	64	transporters.	

Start	Position	
Where	Repton	starts	the	game,	on	Screen	A	(as	x,	y	co-ordinates)	–	should	be	16,7.	

Palette	
The	palette	 is	 stored	 in	 two	 locations.	 The	 first	 location	 is	 four	bytes.	 Each	byte	 is	
made	up	of	the	logical	colour	(top	four	bits),	and	the	actual	colour	(lower	four	bits).	
To	get	the	appropriate	palette	for	the	level,	you	will	need	to	AND	the	level	number	
with	3	(with	the	level	number	being	0..15)	to	produce	an	offset	of	0,	1,	2	or	3.	

However,	 this	 data	 is	 only	 valid	 for	 levels	 2..15.	 For	 0	 and	 1,	 there	 is	 a	 second	
location	with	two	bytes.	Also,	 logical	colour	0	 is	always	actual	colour	0	(black),	and	
logical	colour	3	is	always	actual	colour	2	(green).	And	finally,	level	P	(15)	appears	to	
be	a	combination	of	offset	2	and	3	of	the	first	location.	

Game	Sprites	and	Puzzle	Piece	Sprites	
As	Repton	before	it,	these	are	stored	in	tiled	format.	The	sprite	tiles	are	4x8px	tiles	
of	which	there	are	600	of	them.	These	make	up	the	final	sprites	by	taking	the	sprite	
definition	data,	where	each	byte	is	an	offset	into	these	tiles.	

	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	17	 22	December	2017	

	

These	are	for	the	map	and	puzzle	piece	sprites	only.	The	playing	sprites	are	stored	
differently.	For	these,	there	are	a	number	of	bytes	that	determine	how	big	each	one	
is	 –	 there	 are	 30	 on	 the	BBC	 and	 31	on	 the	 Electron	 (although	only	 25	 are	 used).	
These	can	be	1,	2,	3	or	4	(for	1x1,	2x2,	3x3	or	4x4).	Following	on	from	this	are	the	
addresses	 of	 the	 offsets	 for	 the	 top	 left	 tile.	 This	 offset	will	 be	 the	 direct	 address	
after	 the	 file	 is	 loaded	 into	memory.	 To	 get	 the	 offset	 into	 the	 file,	 just	 subtract	
0x0D00	for	the	BBC	and	0x1100	for	the	Electron.	

However,	the	Electron	is	not	so	as	simple	as	that,	as	there	are	two	locations	for	the	
LSB	address.	The	guide	seems	to	be:	

Valid	for	when	x	is	from	0	to	3,	and	9	to	30.	What	4	to	8	are	used	for	is	unclear	at	the	
time	of	writing.	

1. Read	the	sprite	size	from	location	0x187A	+	x;	
2. Read	the	MSB	address	from	location	0x1958	+	x;	
3. When	x	<=	22,	read	the	LSB	address	from	location	0x1899	+	x;	and	
4. When	x	>=	23,	read	the	LSB	address	from	location	0x1939	+	x.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	18	 22	December	2017	

	

Desktop	Repton	2	
Encryption	Key	
As	 Desktop	 Repton	 1,	 the	 data	 is	 encoded	 with	 the	 processed	 sprite	 file.	 The	
encoding,	and	processing,	of	Repton	2	is	almost	identical	to	Repton	1.	Therefore,	the	
following	is	an	almost	identical	BBC	BASIC	program	to	extract	and	process	the	Sprite	
file	for	use	as	a	key	to	decode	the	Maps	data	file:	
REM Program to process the Desktop Repton 2 Sprite file
REM for use as a key to decode the map
REM
REM This code is taken directly from the DR2 main program
:
ONERRORREPORT:PRINT" at line ";ERL:END
savepath$="ADFS::RISCOS4.$"
:
REM First we'll extract the code
REM This is stored as code length, code, code function names and pointers
:
DIMmap% 1920,map1% 1920
Z%=OPENIN"<Repton2$Dir>.Resources.Code"
INPUT#Z%,A%
DIMcode% A%
size=A%
SYS"OS_GBPB",4,Z%,code%,A% TO,,,A% : REM Read bytes from current pointer
:
REM Now we need to load the Sprite file in and process it
SYS"OS_File",5,"<Repton2$Dir>.Sprites" TO,,A%,,D%
IF (A%>>8)=&FFFFFFCA THEN
 B%=OPENIN"<Repton2$Dir>.Sprites"
 SYS"OS_GBPB",4,B%,&860C,20
 A%=EXT#B%-20
 SYS"Squash_Decompress",8,D% TO wksz%
 D%+=41136
 DIMsprs% D%
 !sprs%=D%
 C%=END+1024
 SYS"OS_GBPB",4,B%,C%,A%
 CLOSE#B%
 B%=-1
 SYS"Squash_Decompress",,code%,C%,A%,sprs%+4,D%
ELSE
 D%+=41136
 DIMsprs% D%
 !sprs%=D%
 SYS"OS_File",255,"<Repton2$Dir>.Sprites",sprs%+4
ENDIF
:
sprtab=&9F4+code%
process=&13CC+code%
map=&DDC+code%
sprtab!-4=sprs%
B%=map%
!map=B%
FOR n%=0 TO 54
 SYS"OS_SpriteOp",256+24,sprs%,STR$n% TO,,A%
 A%+=&2C
 sprtab!(n%*4)=A%
 CALLprocess
 IF A%!-8>A%!-12 THEN A%+=512:CALLprocess
NEXT
:
REM Now we save the key to a file
SYS"OS_File",0,savepath$+".DR2Key",,,sprs%+4,sprs%+26316
PRINT"Desktop Repton 2 decode key saved in "savepath$

And,	as	Desktop	Repton	1	 ,	the	file	will	need	to	be	decrypted	twice	–	once	overall,	
then	once	each	for	each	level:	
temp:=Ord(data[size-4])+Ord(data[size-3])shl 8+Ord(data[size-2])shl 16+Ord(data[size-
1])shl 24;
temp:=temp OR (temp shl 16);

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	19	 22	December	2017	

	

crypt(data,spr_data,0,12,size-4,temp);
for screen:=0 to levelinfo[1]-1 do
 crypt(data,data,(((levelinfo[1]*1024)+levelinfo[1]+3)AND-4)
+(screen*68),screen*1024,68,29);

File	Format	
Offset	 Length	 Description	
0x0000	 0x6000	 Maps	
0x6000	 0x0048	 Offsets	to	level	data	
0x6084	 0x0011	 Palette	offsets	
0x60A4	 0x0011	 Edge	
0x63C4	 0x00FC	 Puzzle	piece	definitions	
0x6544	 0x0180	 Transporter	data	

Co-ordinates	
The	x	and	y	co-ordinates	are	not	screen	co-ordinates,	but	refer	to	a	direct	memory	
location	 into	the	 level	data.	However,	 this	 level	data	has	been	altered	to	 include	4	
rows	of	edge	walls	on	either	side.	To	convert	from	these	
x,y	to	actual	level	x,y	positions	use:	
screen_x = ((y * 10) + (x DIV 4) - 164) DIV 40
screen_y = ((y * 10) + (x DIV 4) - 164) MOD 40

Maps	
For	each	of	the	17	levels,	there	are	4	bytes	which	determine	the	offset	into	the	file	
where	the	map	data	is	held	(LSB/MSB/0x00/0x00).	However,	there	are	18	entries	–	
the	offset	to	the	next	level	is	used	to	determine	level	size.	

Edges	
This	determines	whether	the	edge	is	a	wall	(0x18)	or	a	barrier	(0x19).	However,	this	
can	be	any	character,	as	the	value	stored	here	is	just	the	character	number.	

Palette	
This	is	1	byte	per	level,	which	is	an	indication	to	which	of	the	48	bytes	in	the	RepPal	
file	that	the	colour	data	is	held	for	this	level	(3	bytes	per	colour,	of	which	there	are	
16).	

Puzzle	Pieces	
These	 are	 6	 bytes	 for	 each	 of	 the	 42	 pieces.	 They	 are	 stored	 as	 two	 sets	 of	 data:	
where	found,	where	placed.	Each	set	is	level,	x,	y.	Normally,	where	the	piece	will	be	
placed	will	be	on	level	A,	at	the	bottom.	

Transporters	
Simply,	these	are	6	bytes	for	each	of	the	64	transporters.	As	the	puzzle	pieces,	they	
are	in	2	sets:	from,	to.	Each	set	is	then,	as	the	puzzle	pieces,	level,	x,	y.		

Characters	
The	characters	used	for	Desktop	Repton	are	stored	as	standard	RISC	OS	sprites	in	a	
separate	file,	Sprites.	You	will	need	to	refer	to	the	RISC	OS	Programmer’s	Reference	
Manual	for	details	on	how	these	are	stored.	The	puzzle	pieces	are	stored	as	a	single	
sprite	called	‘puz’.	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	20	 22	December	2017	

	

This	reports	itself	to	RISC	OS	as	a	Mode	0	sprite	with	a	width	of	64	and	a	height	of	
42.	However,	if	you	look	at	the	data	from	offset	0xF4E8	into	the	file,	you	can	see	that	
it	is	a	series	of	bits.	Each	8	bytes	will	describe	a	single	puzzle	piece	-	8	bytes	x	8	bits	=	
64	bits	or	64	pixels,	with	42	pixel	height	=	a	row	for	each	piece.	

So,	 a	 value	 of	 0xFE	 is	 11111110	 in	 binary	 that	 translates	 to	 7	 solid	 pixels	 and	 an	
empty	pixel.	As	all	the	other	tiles	are	32x32px,	each	bit	is	used	four	times	across,	and	
four	times	down	(4x8=32).	The	colouring	 is	applied	afterwards	-	generally,	Desktop	
Repton	colour	the	solid	pixels	alternate	yellow	and	green	(colours	2	and	8	from	the	
RepPal	file).	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	21	 22	December	2017	

	

Archimedes	and	RiscPC	Repton	2	
File	Format	(Archimedes)	
Offset	 Length	 Description	
0x04D88	 0x2800	 Maps	
0x07588	 0xD400	 Characters	
0x14988	 0x0200	 Transporter	locations	
0x14B88	 0x00A8	 Puzzle	Piece	data	
0x14C30	 0x0400	 Level	colour	palettes	
0x15030	 0x0010	 Edges	

File	Format	(RiscPC)	
Offset	 Length	 Description	
0x00FA0	 0x02800	 Maps	
0x037A0	 0x35000	 Characters	
0x387A0	 0x00200	 Transporter	locations	
0x389A0	 0x000A8	 Puzzle	Piece	data	
0x38A48	 0x00400	 Level	colour	palettes	
0x38E48	 0x00010	 Edges	

Maps	
These	are	stored	packed,	as	Method	One	on	page	7.	This	makes	each	of	the	16	levels	
640	bytes	each.	

Edges	
These	are	 ignored	 in	 the	RiscPC	 version,	but	dictate	what	 character	 surrounds	 the	
level.	This	is	quite	simply	the	character	number.	

Characters	
On	the	RiscPC,	these	are	64x64px	with	each	byte	being	2px,	to	represent	one	of	the	
16	colours.	The	Archimedes	characters	are	a	quarter	the	size,	at	32x32px.	There	are	
106	characters	on	both	versions.	

Transporters	
The	Transporters	are	stored	as	8	bytes	each,	split	into	two	sets	–	from	and	to.	Each	
set	is	screen,x,y,0x00.	The	co-ordinates	are	worked	out	thus:	
y = ((byte1 + (byte2 * 256)) – 324) DIV 40
x = ((byte1 + (byte2 * 256)) – 324) – (40 * y)

Puzzle	Pieces	
The	four	bytes	are	screen,	x,	y,	Screen	A	position.	Similar	to	the	transporters,	the	co-
ordinates	will	need	to	be	converted:	
y = ((byte1 + ((byte2 AND $F) * 256)) – 324) DIV 40
x = ((byte1 + ((byte2 AND $F) * 256)) – 324) – (40 * y)

The	Screen	A	position	co-ordinates	are	worked	out:	
y = ((((byte2 AND $F0) >> 4) + (byte3 * 16)) – 84) DIV 40
x = ((((byte2 AND $F0) >> 4) + (byte3 * 16)) – 84) – (40 * y)

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	22	 22	December	2017	

	

Palette	
For	each	level,	there	are	16	colours	and	each	are	stored	in	their	Red,	Green	and	Blue	
component	form:	0x10,	RR,	GG,	BB.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	23	 22	December	2017	

	

Repton	3	
The	 format	 for	 the	 Electron,	 BBC,	 Archimedes	 and	 Desktop	 Repton	 versions	 are	
largely	similar.	The	Commodore	64	version	differs	slightly.	The	one	main	difference	is	
there	are	extra	bytes,	seemingly	unused,	in	the	Commodore	file:	
0x0000:	0xA0		 0x0001:	0x67	 0x2752:	16	bytes	of	0x00	

Also,	each	format	of	file	has	a	specific	size.	This	will	be:	
BBC	Micro:	9,760	bytes	(0x2620)	
Acorn	Electron:	7,712	bytes	(0x1E20)	
Commodore	64:	10,210	bytes	(0x27E2)	
Acorn	Archimedes	and	Desktop	Repton	Low	Res:	28,832	bytes	(0x70A0)	
Desktop	Repton	High	Res:	102,560	bytes	(0x0190A0)	

File	Layout	(BBC/Electron)	
Offset	 Length	 Use	
0x0000	 0x40	 Passwords	
0x0040	 0x10	 Time	Limits	
0x0050	 0x10	 Edit	Codes	
0x0060	 0x80	 Transporters	
0x00E0	 0x20	 Colour	Palette	
0x0100	 0xD20	 Maps	
0x0E20	 0x1800	 Characters	(BBC)	
0x0E20	 0xD80	 Characters	(Electron)	

File	Layout	(Archimedes/Desktop	Repton)	
Offset	 Length	 Use	
0000	 0x40	 Passwords	
0040	 0x20	 Time	Limits	
0060	 0x10	 Edit	Codes	
0080	 0x100	 Transporters	
0180	 0x200	 Colour	Palette	
0380	 0xD20	 Maps	
10A0	 0x6000	 Characters	

File	Layout	(Commodore)	
Offset	 Length	 Use	
0x0000	 0x02	 Unused	(should	be	0xA0	and	0x67)	
0x0002	 0x40	 Edit	Codes	
0x0042	 0x20	 Colour	Palette	
0x0062	 0x1800	 Characters	
0x1862	 0x180	 Map	Characters	
0x19E2	 0x10	 Time	Limits	
0x19F2	 0x40	 Passwords	
0x1A32	 0xD20	 Maps	
0x2752	 0x10	 Unused	(should	all	be	0x00)	
0x2762	 0x80	 Transporters	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	24	 22	December	2017	

	

Passwords	
On	 the	 Commodore	 64,	 these	 are	 not	 encoded	 in	 any	way,	 and	 are	 padded	with	
Spaces	 (0x20).	 The	other	 versions	 are	 terminated	by	a	Carriage	Return	 (0x0D)	 and	
are	not	padded	–	the	extra	bytes	are	ignored.	

For	the	BBC	and	Electron,	each	byte	is	XORed	with	63-offset:	
Byte	0	XOR	63	 Byte	1	XOR	62	 to	 Byte	63	XOR	0	

thereby	covering	all	eight	passwords,	each	one	being	up	to	eight	characters	long.	

The	Archimedes	and	Desktop	Repton	versions	use	a	formula	to	encode/decode	the	
data:	
Archimedes/DR	Low	Res:	
char XOR (mapdata[(charoffset+1) * 0x2F] AND 0x1F

DR	High	Res:	
char XOR (mapdata[((charoffset+1) * 0x2E)-3] AND 0x1F

Edit	Codes	
The	 BBC	 and	 Electron	 is	 simply	 2	 bytes	 per	 Edit	 Code,	 arranged	 as	 LSB/MSB.	 The	
Commodore	 stores	 them	 as	 a	 string,	 padded	 by	 zeros	 at	 the	 beginning	 (to	 5	
characters).	 However,	 as	 the	 user	 cannot	 enter	 an	 edit	 code	 in	 the	 Commodore	
version	of	the	game,	the	edit	codes	are	five	bytes	of	ASCII	0x00	per	screen	with	user-
defined	scenarios.	

The	 Archimedes	 and	Desktop	 Repton	 versions,	 although	 are	 stored	within	 the	 file	
(which	are	a	red	herring),	are	actually	worked	out	from	the	map	data:	

“If	 the	 raw	map	 data	 byte	 has	 bit	 2	 set	 then	 add	 double	 the	 raw	map	 data	 byte,	
otherwise	just	add	the	raw	map	data	byte.”	Or,	in	BBC	BASIC:	
REM screen is the screen number (0-7)
REM and data is a memory location where the data file is loaded
code=0
FOR x=0 to 419
 ptr=&380+(screen*420)+x
 IF (data?ptr AND 4) THEN code=code+(data?ptr)*2 ELSE code=code+data?ptr
NEXT

Time	Limits	
The	 BBC	 and	 Electron	 versions	 are	 2	 bytes	 per	 screen,	 while	 the	 Archimedes	 and	
Desktop	Repton	 versions	 are	4	bytes	per	 screen,	 but	with	only	 the	 first	 two	bytes	
used	 (the	 last	 two	 should	 be	 0x00).	 These	 2	 bytes	 are	 the	 time	 limit	 stored	 as	
LSB/MSB.	

The	Commodore	stores	them	as	Binary	Coded	Decimal…i.e.,	0x12	and	0x34	would	be	
a	time	limit	of	1234.	

Transporters	
The	4	transporters	per	screen	are	stored	in	four	bytes	each	on	the	BBC,	Electron	and	
Commodore	as	 source	 x,	 source	y,	destination	 x,	destination	y.	 If	 unused,	 the	 first	
byte	should	be	0xFF.	

The	Archimedes	and	Desktop	Repton	versions	are	stored	as	8	bytes	per	transporter,	
with	bytes	0	and	1	as	the	source,	and	bytes	4	and	5	as	the	destination.	Bytes	2,	3,	6,	
and	7	should	be	0x00.	The	x	and	y	are	worked	out	thus:	
y = ((byte0 + byte1 * 256) – 148) DIV 36

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	25	 22	December	2017	

	

x = ((byte0 + byte1 * 256) – 148) – (36 * y)

It	 would	 be	 worth	 validating	 this	 data	 once	 you	 have	 unpacked	 the	map	 data	 to	
ensure	that	there	is	actually	a	transporter	at	the	source	location.	

Colour	Palette	
Each	screen	can	be	a	different	colour,	so	each	of	the	four	colours	are	stored	in	this	
location.	For	the	BBC	and	Electron,	each	of	the	4	colours	per	screen	are	stored	as	a	
single	 byte	 per	 colour	 (meaning	 4	 bytes	 per	 screen).	 Each	 byte	 represents	 a	 BBC	
actual	colour:	
0:	Black	 1:	Red	 2:	Green	 3:	Yellow	 4:	Blue	 5:	Magenta	 6:	Cyan	 7:	White	
(or,	bit	0:	red,	bit	1:	green,	and	bit	2:	blue	components	i.e.	2	bits	per	pixel)	

The	Commodore	is	similar,	but	the	colours	are	different:	
0:	Black	 	 1:	White	 	 2:	Red	 	 3:	Cyan	 	 4:	Purple	
5:	Green	 	 6:	Blue	 	 7:	Yellow	 	 8:	Orange	 	 9:	Light	Orange	
10:	Light	Red	 11:	Light	Cyan	 12:	Light	Purple	 13:	Light	Green	 14:	Light	Blue	
15:	Light	Yellow	

The	Archimedes	and	Desktop	Repton	stores	them	as	4	bytes	per	colour,	16	colours	
per	screen.	Byte	0	 is	unused,	while	 the	 first	4	bits	of	bytes	1,	2	and	3	are	 the	 red,	
green	and	blue	components	of	the	colour,	i.e.	4	bits	per	pixel.	The	High	Res	version	
of	Desktop	Repton	goes	that	step	further	with	all	eight	bits	being	used,	making	it	8	
bits	per	pixel.	

Maps	
The	 map	 data	 across	 all	 four	 platforms	 is	 exactly	 the	 same,	 and	 is	 encoded	 as	
Method	One	described	on	page	7.	The	Repton	3	maps	are	28	characters	across	by	24	
characters	down,	which	means	that	each	screen	takes	up	420	bytes	each.	

Characters	
The	character	data	is	stored	as	described	on	page	8.	However,	they	are	different	to	
previous	Reptons	in	that	they	are	not	stored	as	tiles,	but	the	entire	character	can	be	
found	in	a	single	16x32	pixel	definition,	per	character	(12x24	for	Electron,	32x32	for	
Archimedes	and	Desktop	Low	Res,	and	64x64	for	Desktop	High	Res).	

Competition	Codes	
The	competition	code,	on	the	BBC	and	Electron,	 is	worked	out	 from	the	maximum	
possible	score,	and	a	hash	table	calculated	from	the	first	255	bytes	of	the	file.	

For	the	maximum	possible	score,	diamonds	(and,	hence,	safes	and	cages)	are	scored	
at	5	points,	eggs	are	20,	and	crowns	are	50.	The	following	C++	function	(where	buffer	
is	 the	area	of	memory	the	file	 is	 loaded	 into,	and	score	 is	 the	aggregate	maximum	
possible	score	of	all	8	screens):	
void calculate_competition_code(unsigned char *buffer, unsigned int score)
{
 unsigned char codelen;
 unsigned char comp[20];
 uint32_t roller;
 uint16_t hash;
 uint16_t loop;
 unsigned char output;
 // Start with the maximum score for this level set
 roller=score;
 // Seed the hash
 hash=0xeeff;

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	26	 22	December	2017	

	

 // Calculate "HASH" of first 255 bytes of level file
 // PASSWORDS/TIME_LIMITS/EDIT_CODES/TRANSPORTERS/COLOUR_PALETTE
 for (loop=0; loop<=0xff; loop++)
 {
 // Read byte from level file
 output=buffer[loop];
 // Update HASH LOW byte
 output^=(hash&0x00ff);
 hash=(hash&0xff00)|output;
 // Update HASH HIGH byte
 output^=((hash&0xff00)>>8);
 hash=(hash&0x00ff)|(output<<8);
 }
 // Add the hash to the roller
 roller|=(hash<<16);
 codelen=0x00;
 while (roller != 0x00)
 {
 output=0x00;
 for (loop=0x00; loop<0x20; loop++)
 {
 // Shift output by 1 bit
 output=output<<1;
 // If roller MSB then add to output
 if (roller&0x80000000)
 output++;
 // Shift roller by 1 bit
 roller=roller<<1;
 // If output overflows 0..9 then add bit to roller LSB
 if (output>=0x0a)
 {
 output-=0x0a;
 roller++;
 }
 }
 // Add output number to storage stack
 if (codelen<sizeof(comp))
 comp[codelen++]=output;
 }
 // Read numbers off stack to output competition code
 do
 {
 codelen--;
 printf("%d", comp[codelen]);
 } while (codelen>0);
 printf("\n");
}

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	27	 22	December	2017	

	

Repton	Infinity	
The	Repton	 Infinity	 files	are	 separated	 into	directories	on	disc,	depending	on	 their	
contents.	The	files	are	usually	referred	to	by	their	filename	including	this	directory:	
E	 Thumbnail	sprites	(for	the	editors)	
G	 Linked	game	file	(i.e.	Run	this	to	play)	
M	 Maps	
O	 Compiled	object	code	from	the	source	
S	 Full	size	sprites	(for	the	game)	
T	 Tokenised	source	code	
D	 Combined	file	for	source	(Master	only)	

The	Acorn	Electron	version	will	have	an	‘e’	before	this	letter	(i.e.	eE,	eG,	eM,	etc.).	All	
Electron	files	are	identical	to	the	BBC	files,	except	for	those	indicated	below.	

G.game	format	
The	whole	file	is	encrypted	with	a	basic	EOR	scheme	of:	
byte EOR key

The	key	starts	at	0	and	is	decreased	by	3	each	cycle,	so	we	have:	
byte0 EOR 0
byte1 EOR 0xFD
byte2 EOR 0xFA

As	‘junk’	bytes	are	put	in	to	fill	in	space,	the	file	should	always	be	the	same	size:	
0x0000		 Sprites	(as	0x114	from	S.*)	
0x1800		 [junk	byte]	Map	Author	Name	(as	0x000	from	M.*)	
0x1810		 [junk	byte]	Sprite	Author	Name	(as	0x004	from	S.*)	
0x1820		 [junk	byte]	Code	Author	Name	(as	0x000	from	O.*)	
0x1830		 [junk	byte]	Game	Title	(as	supplied	by	Linker)	
0x1850		 [junk	byte]	Ending	Message	(as	supplied	by	Linker)	
0x1870		 [junk	byte]	Filename	(e.g.	Rep3A)	
0x1880		 Object	Code	(as	0x0F0	from	O.*)	padded	with	NULL	
0x1B50	 Map	data	(as	0x010	from	M.*)	
0x2350		 Map	Sprites	(as	0x014	from	S.*)	
0x2450		 Object	Code	look	up	table	(from	0x010	in	O.*)		

eG.game	format	
As	G.*	format,	except:	
0x0000		 Sprites	(as	0x114	from	eS.*)	
0x0600		 [junk	byte]	Map	Author	Name	(as	0x000	from	eM.*)	
0x0610		 [junk	byte]	Sprite	Author	Name	(as	0x004	from	eS.*)	
0x0620		 [junk	byte]	Code	Author	Name	(as	0x000	from	eO.*)	
0x0630		 [junk	byte]	Game	Title	(as	supplied	by	Linker)	
0x0650		 [junk	byte]	Ending	Message	(as	supplied	by	Linker)	
0x0670		 [junk	byte]	Filename	(e.g.	Rep3A)	
0x0680		 Object	Code	(as	0x0F0	from	eO.*)	padded	with	NULL	
0x0950		 Map	data	(as	0x010	from	eM.*)	
0x1150		 Map	Sprites	(as	0x014	from	eS.*)	
0x1250		 Object	Code	look	up	table	(from	0x010	in	eO.*)	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	28	 22	December	2017	

	

E.game	file	format	
48	blocks	of	16	bytes,	each	is	a	Mode	1	screen	dump	of	thumbnail	(at	2bpp	=	4ppB)	
(thumbnail	is	8	x	8	pixels),	as	described	on	page	8.		

M.game	format	
Header	
Offset	 Length	Use	
0x000	 0x010	 Name	of	author	terminated	with	a	0x0D;	the	rest	of	the	line	is	junk.	
0x010	 0x200	 Map	screen	1	
0x210	 0x200	 Map	screen	2	
0x410	 0x200	 Map	screen	3	
0x610	 0x200	 Map	screen	4	
Screen	formats	
Offset	 Length	Use	
0x000	 0x1E0	 Map	data	
0x1E0	 0x018	 Teleporters	
0x1F8	 0x001	 Map	visible	flag	(01	=	map	visible)	
0x1F9	 0x001	 Password	flag	(01	=	requires	a	password)	
0x1FA	 0x002	 Score	-	a	16	bit	number	in	LSB/MSB	form	
0x1FC	 0x004	 Palette:	1	byte	for	each	colour		

Repton	 Infinity	 maps	 have	 dimensions	 of	 32	 x	 24	 characters	 with	 32	 possible	
characters	that	can	be	used.	The	format	used	is	Method	Two	as	described	on	page	7.	

Transporter	 data	 is	 given	 as	 2	 16	 bit	 numbers	 (in	 LSB/MSB	 form)	 for	 each	
transporter:	source	and	destination.	Each	16	bit	number	is	an	address:	
X=addr MOD 32
Y=addr DIV 32

S.game	file	format	
Header	
Offset	 Length		 Use	
0x000	 0x0001		 Colour	0	
0x001	 0x0001		 Colour	1	
0x002	 0x0001		 Colour	2	
0x003	 0x0001		 Colour	3	
0x004	 0x0010		 Name	of	author	terminated	with	a	0x0D.	
0x014	 0x0100		 Map	sprite	chunk	
0x114	 0x1800		 Sprite	chunk	
Map	sprite	chunks	
Size	of	image	is	4	x	8,	and	as	per	format	on	page	8.	
Sprite	chunk	
Each	entry	is	128	bytes	in	size,	as	per	format	on	page	8.	Size	of	each	sprite	is	16	x	32	
pixels.	

eS.game	file	format	
This	is	identical	to	the	S.*	format,	except:	
Offset	 Length	Use	
0x000	 0x001	 Colour	0	
0x001	 0x001	 Colour	1	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	29	 22	December	2017	

	

0x002	 0x001	 Colour	2	
0x003	 0x001	 Colour	3	
0x004	 0x010	 Name	of	author	terminated	with	a	0x0D	
0x014	 0x100	 Map	sprite	chunk	
0x114	 0x600	 Sprite	chunk	
Sprite	chunk	
Each	entry	is	32	bytes	in	size,	as	per	format	on	page	8.	Size	of	each	sprite	is	8	x	16	
pixels.	

O.game	file	format		
Offset	 Length	Use	
0x00	 0x10	 Author	Name	0xd	terminated	
0x10	 0x20	 Low	byte	of	the	address	of	the	DEFINE	ACTION	routine/sprite	
0x30	 0x20	 High	byte	of	the	address	of	the	DEFINE	ACTION	routine/sprite	
0x50	 0x20	 Low	byte	of	the	address	of	the	DEFINE	HITS	routine/sprite	
0x70	 0x20	 High	byte	of	the	address	of	the	DEFINE	HITS	routine/sprite	
0x90	 0x20	 System	flags	(1)/sprite	
0xB0	 0x20	 System	flags	(2)/sprite	
0xD0	 0x20	 User	flags/sprite	
0xF0	 ...	 6502	machine	code	for	the	DEFINE	routines,	base	is	0x5BB0	

Addresses	 are	 absolute	 addresses	 for	 the	 routine	 which	 is	 place	 in	 memory	 at	
0x5BB0	(so	it	steals	the	first	few	lines	of	screen	memory).	If	the	address	is	0;	then	the	
routine	is	not	defined.	
System	Flags	(1)	are:	
0x01:	unknown	 0x02:	unknown	 0x04:	One	 	 0x08:	Two	
0x10:	unknown	 0x20:	unknown	 0x40:	unknown	 0x80:	Animate	

If	0x04	and	0x08	and	0,	then	speed	is	Four.	It	is	unknown	what	happens	if	both	are	1.	
System	Flags	(2)	are:	
0x01:	Transport	 0x02:	Squash	 	 0x04:	Cycle	 	 0x08:	Under	
0x10:	VPush	 	 0x20:	HPush	 	 0x40:	Deadly	 	 0x80:	Solid	

Code	is	translated	from	the	Reptol	directly	to	6502	code.	Then	optimised	to	replace	
JSR	 xxxx:RTS	 with	 JMP	 xxxx.	 This	 isn't	 perfect	 if	 the	 code	 is	 followed	 by	 an	 END,	
which	will	still	stay	as	RTS.	
Code	equivalents:	

(Note	 all	 JSRs	 can	 be	 turned	 into	 JMPs	 by	 the	 optimising	 if	 they	 are	 the	 last	
statement	in	the	logical	flow.)	

CHANCE(x):	(75%	used	here)	
LDA #&FF:STA &33:LDA #&5F:STA &34:JSR &1D43:BCS xxxx (IF)

0x5FFF	=	75?	Some	form	of	floating	point.	Range	is	0	-	99.99	

CHANGE(x,y):	
LDX #x:LDY #y:JSR &1982

Where	x	and	y	are	the	sprite	numbers	to	change	from	(x)	to	(y)	

CONTENTS	x:	
CMP #x

Where	x	is	the	sprite	number	(this	is	returned	from	the	routine	for	LOOK(x).	

CREATE(x,d):	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	30	 22	December	2017	

	

LDY #d:LDA #x:JSR &19EB

or,	if	in	the	HITS	section:	
LDY #d:LDA #x:JSR &1A54

Where	x	is	the	sprite	number	

d	is	the	direction,	listed	below.	If	this	is	not	included	d	is	0x42	

d	is	the	location	to	create.	0x42	is	the	current	location	on	a	grid	of	32	characters.	So	
W	is	-1;	E	is	+1;	N	is	-0x20;	S	is	+0x20;	NW	is	-0x21;	NE	is	+0x19;	SW	is	+0x19;	NE	is	
+0x21.	(Why	0x42?)	

DEFINE:	
Is	removed	-	reproduce	these	from	the	header	

EASTOF:	
JSR &18A5:BCC xxxx (IF)

EFFECT(x):	
LDA #x:JSR &1C13

ELSE:	
Dealt	with	by	IF	

END:	
RTS

Not	removed	in	Optimisation(!)	even	if	preceded	by	a	JSR;	so	you'll	see	the	strange	
statement	of	JMP	xxxx:RTS	

ENDIF:	
Dealt	with	by	IF	

EVENT(x):	
LDA #&0e:AND #x:BNE xxxx (IF)

The	event	timer	byte	(0x000E)	has	a	bit	set	for	each	timer	that	has	gone	off,	so	the	
AND	is	for	the	check	of	the	bit:	
6	 0x7F	
5	 0x3F	

FLASH(x):	
LDA #x:STA &0069

Where	x	is	the	numeric	equivalent	of	the	colour,	e.g.	3	=	yellow	

FLIP:	
LDA (&0058),Y:EOR #&40:STA (&0058),Y

0x0058	contains	the	status	byte	for	the	current	object,	bit	0x40	is	the	STATE()	bit.	

GOTO	(x):	
JMP x

x	 will	 be	 the	 absolute	 address	 for	 the	 label	 code;	 i.e.	 you'll	 only	 have	 a	 JMP	 to	
0x5BB0	for	a	GOTO.	

HITBY(x):	
LDA #&0049:BNE xxxx (IF)

IF:	
Usually	just	implemented	as	a	branch	-	this	does	depend	on	what's	been	tested.	ELSE	
will	be	implemented	by	a	JMP	at	the	end	of	the	first	if,	so	something	like:	
LDA (&0058),Y:AND #&40:BNE .else
...
JMP .next
.else JSR &1864

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	31	 22	December	2017	

	

...

.next RTS

If	a	JSR	has	been	turned	into	a	JMP	by	the	optimiser,	assume	that	this	is	the	end	of	
the	IF	branch.	

KEY:	
JSR &18CB

KILLREPTON:	
INC &0010

LABEL:	

Not	assembled,	will	have	to	reform	it	programatically	

LOOK(x):	
JSR x

These	are	implemented	as	separate	routines	for	each	direction:	
F:	0x17EA	 SW:	0x1836	 W:	0x1844	
R:	0x17EE	 SE:	0x1834	 E:	0x1850	
B:	0x17F2	 NW:	?	 	 S:	0x185A	
L:	0x17F6	 NE:	?	 	 N:	0x1864	

MOVE(x):	
LDA #x:JSR &19AE

Where	x	is	the	numeric	equivalent	of	the	direction:	
0:	E	 1:	S	 2:	W	 3:	N	
4:	F	 5:	R	 6:	B	 7:	L	

MOVING:	
LDA (&0058),Y:BPL xxxx

Bit	7	of	the	object	status	is	the	moving	flag.	

NAME:	
Not	assembled,	with	have	to	reform	it	programmatically.	

NORTHOF:	
JSR &18B3:BCC xxxx (IF)

NOT:	
Swaps	the	logic	over	in	the	IF,	e.g.	BMI	instead	of	BPL.	

SCORE(x):	
LDA #x:JSR &1B37

SOUND(x):	
LDA #x:JSR &1C1D

SOUTHOF:	
JSR &188D:BCC xxxx (IF)

STATE(x):	
LDA (&0058),Y:AND #&40:BNE xxxx (IF)

WESTOF:	
JSR &189B:BCC xxxx (IF)

User	flags	are	stored	in	0x64	

T.game	file	format	
Offset	 Length	Use	
0	 16	 Name	of	author	terminated	with	a	0x0D	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	32	 22	December	2017	

	

Language	chunks	x	48	
Each	 language	 chunk	 is	 the	 tokenised	 source	 code	 of	 the	 sprite,	 using	 the	 below	
tokens:	
80:	NAME	 81:	HITBY	 82:	LOOK(83:	DEFINE	 84:	CREATE(
85:	IF	 	 86:	MOVING	 87:	ELSE	 88:	ENDIF	 89:	GOTO	
8A:	NOT	 8B:	KILLREPTON	 	 8C:	CHANGE(8D:	END	
8E:	SCORE(8F:	SOUND(90:	FLIP	 91:	EFFECT(92:	FLASH(
93:	CHANCE(94:	KEY	 95:	One	 96:	Two	 97:	Four	
98:	TYPE	 99:	ACTION	 9A:	HITS	 9B:	MOVE(9C:	STATE(
9D:	LABEL	 9E:	EVENT(9F:	CONTENTS	A0:	Animate	 A1:	RED	
A2:	GREEN	 A3:	YELLOW	 A4:	BLUE	 A5:	MAGENTA	A6:	CYAN	
A7:	WHITE	 A8:	WESTOF	 A9:	SOUTHOF	 AA:	EASTOF	 AB:	NORTHOF	

An	0x0D	is	counted	as	a	line	feed.	

Indents	are	performed	by	a	byte	greater	than	0xC8,	the	indent	is	byte	-	0xC8	spaces.	
So	0xCF	will	indent	6	spaces.	

Each	 sprite	entry	 is	 terminated	with	a	0xFE	byte.	An	empty	 sprite	will	 just	 contain	
0x0D	 and	 the	 0xFE	 terminator.	 All	 sprites	 will	 have	 a	 definition,	 including	 the	
animation	sprites	(even	though	they	cannot	have	source	code	assigned	to	them).	

There	may	be	junk	after	the	48	entries,	this	must	be	ignored.	

Passwords	
Passwords	are	encoded	using	the	map	data,	so	the	following	BBC	BASIC	program	will	
unencode	them	for	you:	
DIM map &810,bytes 8
m%=map+&10
:
PRINT"Repton Infinity Password Printer"
INPUT'"Filename M."n$'
OSCLI"LOAD M."+n$+" "+STR$~(map)
FOR level=0 TO 2
 PRINT CHR$(level+50)") "FNcalcpass(level)
NEXT level
END
:
DEFFNcalcpass(level)
LOCAL A,X,Y,pword$
FOR Y=0 TO 8
 bytes?Y=0
NEXT Y
Y=0
REPEAT
 FOR X=7 TO 0 STEP-1
 A=bytes?X
 A=A EOR ?((level*&200)+m%+Y)
 A=A EOR ?((level*&200)+m%+&E0+Y)
 bytes?X=A
 Y=(Y-1)AND255
 NEXT X
UNTIL Y=0
FOR X=7 TO 0 STEP-1
 A=bytes?X
 A=A MOD 26
 A=A+65
 bytes?X=A
NEXT X
pword$=""
FOR Y=6 TO 0 STEP-1
 pword$=pword$+CHR$(bytes?Y)
NEXT Y
=pword$+CHR$(bytes?7)

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	33	 22	December	2017	

	

Sinclair	ZX	Spectrum	Repton	Mania	
This	is	based	on	the	DSK	file	of	an	original	+3	disc	copy	of	Repton	Mania.	The	BIN	file	
is	 the	DSK	 file	with	 the	 'Track-Info'	 stripped	out	 (I	wrote	a	small	 routine	 to	do	 this	
and	 produce	 the	 BIN	 file).	 The	 beginnings	 of	 tracks	 are	 identified	 by	 the	 string	
"Track-Info",	 which	 indicates	 a	 0x100	 area	 of	 track	 description	 that	 can	 safely	 be	
removed	 for	 the	purposes	 of	 data	 extraction.	 The	 initial	 0x1300	bytes	 can	 also	 be	
removed,	but	as	this	does	not	"get	in	the	way"	of	any	data,	it	is	irrelevant	whether	it	
stays	or	not.	
The	memory	offset	column	is	where	the	data	resides	within	the	actual	ZX	Spectrum	
when	 loaded.	From	this,	 the	 respective	positions	can	be	 located	within	a	snapshot	
file	 (e.g.	 z80).	 Remember	 that	 0x4000-0x57FF	 and	 0x5800-0x5AFF	 are	 the	 screen	
memory	 locations	 for	 pixel	 data	 and	 then	 colour	data	 respectively	 -	 see	 the	notes	
below	the	breakdown.	

DSK	and	Memory	Usage	
.bin	 Memory	
Offset	 Offset	 Description	
0x00000	 	 Disc	descriptor	and	disc	protection	loading	code	
0x01100		 	 Data	-	loading	code	and	game	selector?	
0x01300	 	 Repton	Mania	Loading	screen	(0x1800	size)	
0x02B00	 	 Repton	Mania	Loading	screen	colour	data	(0x300	size)	
REPTON	1	
0x02E00	 	 Repton	Loading	screen	(0x1800	size)	
0x04600		 	 Repton	Loading	screen	colour	data	(0x300	size)	
0x04900	 0x5B00	 Repton	Maps	(12	off	at	0x400	size	each)	
0x07900	 0x8B00	 Character	set	graphics	(each	character	is	5	bytes	=	8x5px)	
0x07A40	 0x8C40	 "Repton"	display	at	top	of	opening	screen	
0x08240	 0x9440	 unknown	
0x08442	 0x9642	 Lookup	table	into	the	screen	memory	
0x08772	 0x9972	 Repton	1	map	characters	(each	character	is	8	bytes=8x8px:	32off)	
0x08872	 0x9A72	 Repton	1	character	area	(each	character	is	0x80=32x32px:	54off)	
0x0A372	 0xB572	 Character	colour	data	(0x10	per	character)	
	 0xB8D2	 End	of	colour	data	+	blanked	off	work	area	
0x0A6F2	 	 unknown	
0x0A7B6	 	 Lookup	table	into	the	screen	memory	
0x0A826	 0xD60A	 Passwords	-	10	characters,	padded	with	spaces	(ASCII	32)	
0x0A89E	 0xD682	 unknown	
0x0A8AA	 0xD68E	 Level	palette	colours	(5	bytes	per	level)	
0x0A8E6	 0xD6CA	 unknown	
0x0AB82	 0xD967	 Text	labels	
0x0AFCF	 0xDDB2	Null	data	
0x0B0C4	 	 unknown	-	code?	
0x0B70C	 	 Null	data	
0x0B894	 	 unknown	-	code?	
0x0C34D	 	 Null	data	
0x0C44C	 	 unknown	-	patch?	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	34	 22	December	2017	

	

0x0CCB6	 	 Null	data	
REPTON	2	
0x0CD00	 	 Repton	2	loading	screen	(0x1800	size)	
0x0E500	 	 Repton	2	loading	screen	colour	data	(0x300	size)	
0x0E800	 0x5B00	 Repton	2	maps,	each	character	is	packed	into	5	bits	
0x10920	 0x7C20	 Transporter	data:	7	bytes	(screen	from,X,Y,screen	to,X,Y,0x00)	
0x10AE0	 0x7DE0	 Puzzle	Piece	data:	6	bytes	(screen,X,Y,ScreenA	X,ScreenA	Y,0x00)	
0x10BDC	 0x7EDC	 Spirit	Data:	4	bytes	(Screen,X,Y,direction)	
0x10D08	 0x8008	 "Message	to	fill	36	spare	bytes		GJS"	
0x10D2C	 0x802C	 Character	set	graphics	(each	character	is	5	bytes	=	8x5px)	
0x10E6C	 0x816C	 "Repton	2"	display	at	top	of	opening	screen	
0x1166C	 0x896C	 Lookup	table	into	the	screen	memory	
0x1199C	 0x8C9C	 Music	data	
0x11A9E	 0x8D9E	 Repton	2	puzzle	pieces	(8x8px,	each	piece	is	0x08)	
0x11BEE	 0x8EFE	 Repton	2	character	area	(32x32px,	each	character	is	0x80)	
0x1396E	 0xAC6E	 Repton	2	character	colour	data	(0x10	per	character)	
	 0xB068	 Work	area	
0x13E00	 0xD0FC	 Level	colour	palette	(5	bytes	per	level)	
0x13E5A	 0xD156	 Level	size	in	rows	(1	byte	per	level)	
0x13E6C	 0xD168	 Level	offsets	(2	bytes	per	level,	add	0xE800	to	get	offset	into	file)	
0x13E90	 0xD18C	 Level	surrounds	(3	bytes	per	level:	top,	sides,	bottom)	
0x13EC6	 0xD1C2	 Top	of	level	(01	-	Meteors,	00	-	no	meteors)	
0x13ED8	 0xD1D4	 Sequence	of	colours	to	animate	Repton	2	banner	
0x13F19	 0xD215	 Keyboard	mapping	
0x13F68	 0xD264	 unknown	
0x143DF	 0xD6DB	Text	labels	
0x147BC	 0xDAB8	 unknown	
0x150B3	 	 Null	data	
0x15188	 	 unknown	
0x15E51	 	 Null	data	
0x15F34	 	 unknown	
0x168D2	 	 Null	data	
0x168F2	 	 unknown	
0x16904	 	 Null	data	
0x169FF	 	 end	of	data	(rest	of	file	is	junk)	

Maps	
The	maps	 for	Repton	are	not	compressed,	so	each	byte	will	 represent	a	character.	
However,	Repton	2	maps	are	stored	as	per	Method	Two	on	page	7.	

Transporters,	Puzzle	Pieces	and	Spirits	
The	co-ordinates	for	the	Transporters,	Puzzle	Pieces	and	Spirits	are	worked	out	thus,	
to	give	a	number	between	0	and	31.	The	screens	will	be	between	1	and	18:	
x=(X-12)div 4
y=(Y-24)div 4

Where	X	and	Y	are	the	values	stored,	with	x	and	y	being	the	actual	co-ordinates.	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	35	 22	December	2017	

	

Z80	format	
The	ZX	Spectrum	emulators	can	store	a	snapshot	of	the	memory,	in	many	different	
formats.	 One	 of	 the	 most	 common	 is	 the	 .z80	 format,	 which	 is	 described	 here	
(abridged	so	that	only	the	information	needed	to	extract	Repton	data	is	listed).	
offset	 Description	
0x0000	 Header	
0x0006	 If	0x0006	and	0x0007	are	zero,	file	is	version	2	or	3,	otherwise	1	
0x000C	 If	bit	5	is	set	on	version	1,	data	is	compressed	
0x001E	 V1	-	Data	(as	laid	out	in	memory);	V2/3	-	Second	header	
0x0022	 V2/3	-	machine	type	(0x0:	48K,	0x4:128K,	0x7:	+3,	0xC:	+2)	
0x0056	 V2/3,	not	machine	0x7	–	Compressed	data,	in	data	blocks	
0x0057	 V2/3,	machine	0x7	–	Compressed	data,	in	data	blocks	
Version	2/3	Data	block	headers	
offset	 Length	 Description	
0x0000	 2	bytes	 Length	
0x0002	 1	byte	 Page	
0x0003	 x	bytes	 Data	
Version	2/3	pages	
Page	 Memory	offset	
	 128K/+2/+3	 	 48K	
3	 0xC000	to	0xFFFF	
4	 	 	 	 0x8000	to	0xBFFF	
5	 0x8000	to	0xBFFF	 0xC000	to	0xFFFF	
8	 	 0x4000	to	0x7FFF	
Compression	
The	compression	method	is	very	simple:	it	replaces	repetitions	of	at	least	five	equal	
bytes	by	a	four-byte	code	ED	ED	xx	yy,	which	stands	for	"byte	yy	repeated	xx	times".	
Only	sequences	of	length	at	least	5	are	coded.	The	exception	is	sequences	consisting	
of	 ED's;	 if	 they	 are	 encountered,	 even	 two	 ED's	 are	 encoded	 into	 ED	 ED	 02	 ED.	
Finally,	every	byte	directly	following	a	single	ED	is	not	taken	into	a	block,	for	example	
ED	00	00	00	00	00	00	is	not	encoded	into	ED	ED	ED	06	00	but	into	ED	00	ED	ED	05	00.	
The	block	is	terminated	by	an	end	marker,	00	ED	ED	00.	
Full	details	of	both	the	z80	and	DSK	format	can	be	found	on	the	World	Of	Spectrum	
web	site	(www.worldofspectrum.org).	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	36	 22	December	2017	

	

EGO:	Repton	4	
Passwords	
The	 passwords	 for	 EGO	 can	 be	 found	 in	 the	main	 program	 file,	 !Repton.ObjCode,	
from	offset	0x168AC	 to	0x169A3.	 There	are	a	 total	 of	 31	passwords,	 including	 the	
cheat	 (the	 last	 one).	 There	 is	 no	 terminating	 character	 as	 each	 password	 is	 8	
characters	long	(31*8=248).	Each	byte	needs	to	be	XOR-ed	with	0xFF	to	get	the	ASCII	
code.	

Level	data	
All	the	EGO	Repton	4	levels	are	stored	in	the	!Repton4.Resources.Allmaps	file.	

Each	map	 is	made	up	of	19x19	 tiles.	These	are	 represented	 in	 the	 file	unencoded,	
and	as	it	 is	 laid	out	as	on	the	screen.	However,	each	tile	 is	represented	as	a	4-byte	
word,	and	the	screens	are	not	in	screen	order.	
Character position = ((level-1)*361*4)+((y-1)*19*4)+((x-1)*4)
where 1<=level<=30;1<=x<=19;1<=y<=19

To	get	to	the	appropriate	data	for	the	screen,	there	are	30	bytes	in	the	ObjCode	
which	are	offsets,	multiplied	by	the	data	size,	into	the	Allmaps	file.	This	table	can	be	
found	at	offset	0x165D0,	and	each	screen	is	0x5A4	in	size.	Therefore,	the	formula	
you	need	is:	
Offset into Allmaps = (byte-1)*0x5A4

Each	tile	is	laid	out	as	a	4-byte	word.	Bytes	0,	1	and	2	are	used	to	store	extra	
information.	Where	this	information	is	not	used,	it	is	generally	0x00	but	treat	it	as	
undefined.	Byte	3	refers	to	the	characters:	
0x00:	Repton	
0x01:	Puzzle	placement	
0x02:	Up	conveyor	
0x03:	Down	conveyor	
0x04:	Left	conveyor	
0x05:	Right	conveyor	
0x06:	Android	

Byte	1	is	unknown.	Byte	2	is	the	direction	and	speed	with	0x01,	0x02	&	0x03	representing	Left/Right	and	0x04,	0x05	
&	0x06	representing	Up/Down.	The	higher	the	number	the	faster	it	moves.	

0x07:	Gem	
Byte	1	is	how	many	times	to	pick	up,	or	how	many	gems	are	on	the	space,	depending	on	how	you	look	at	it.	

0x08:	Tower/Gem	
Byte	1	is	the	same	as	a	Gem	

0x09:	Tower/Potion	
0x0A:	Tree	
0x0B:	Tower	
0x0C:	Disappearing	tree	(i.e.	walk	into	it	and	it	disappears)	
0x0D:	Blank	(or	grass,	again,	depending	on	how	you	look	at	it)	
0x0E:	Mushroom	
0x0F:	Black	hole	

Byte	1	can	be	0x01	for	always	there,	or	other	values	indicating	the	length	of	time	until	it	appears.	
0x10:	Transporter	

Byte	1	is	the	transporter	number,	and	byte	2	is	either	0x00	for	a	destination	or	0x01	for	a	source.	
0x11:	Puzzle	piece	

Byte	1	is	the	piece	number.	These	are	numbered,	on	a	completed	puzzle,	1	to	5	across,	then	6	to	10	on	the	second	
row,	etc.	to	25.	

0x12:	Transporter/Black	Hole	
Bytes	1	and	2	as	for	the	Transporter	

0x13,	0x14	and	0x15:	Unused	
0x16:	Disappearing	tree	with	bonus	

Byte	1	-	extra	bonus	score	x6000.	You’ll	also	get	an	extra	life	for	this	tile.	

	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	37	 22	December	2017	

	

PC	Repton	3	Graphics	
The	graphics	files,	*.r3g,	used	by	PC	Repton	3	contain	all	216	characters	in	Windows	
Bitmap	 format.	Each	graphic	does	not	have	 the	bitmap	header,	as	 they	are	all	 the	
same,	and	are	stored	 ‘back-to-back’.	Details	of	 the	order	of	 the	216	characters	are	
given	in	the	PC	Repton	3	Editor	under	Help.	Normally,	you	wouldn’t	need	to	worry	
about	the	format,	as	the	editor	takes	the	bitmaps	and	creates	the	file.	However,	 if	
you	wanted	to	edit	existing	graphics,	you	would	need	to	split	this	file	back	into	the	
bitmaps,	which	the	editor	does	not	do.	

Windows	Bitmap	Layout	
This	 is	 an	 abridged	 version	 of	 the	 format,	 with	 only	 the	 information	 required	 for	
these	 files	 listed.	 Addresses/offsets	 use	 little	 endian.	 The	 numbers	 in	 brackets	 are	
the	actual	values	used	for	each	bitmap.	
Offset	 Description	
0x0000	 File	Header	
0x000E	 DIB	Header	
0x0036	 Palette	
0x????	 Raw	bitmap	data	(see	headers	for	offset)	
Offset	 Size	 Description	
File	Header	
0x0000	 2	 'BM'	Identifies	it	as	a	BMP	(0x4D42)	
0x0002	 4	 Size	of	the	file	in	bytes	(0x00001438)	
0x0006	 4	 Reserved	(0x00000000)	
0x000A	 4	 Offset	to	pixel	data	(0x00000436)	
DIB	Header	
0x000E	 4	 Size	of	DIB	header	(0x00000028)	
0x0012	 4	 Bitmap	width	(0x00000040)	
0x0016	 4	 Bitmap	height	(0x00000040)	
0x001A	 2	 Colour	planes	(0x0001)	
0x001C	 2	 Colour	depth/bits	per	pixel	(0x0008)	
0x001E	 4	 Compression	method	(0x00000000)	
0x0022	 4	 Size	of	the	raw	bitmap	data,	i.e.	[0x02]-[0x0A]	(0x00001002)	
0x0026	 4	 Horizontal	resolution	(0x00000B12)	
0x002A	 4	 Vertical	resolution	(0x00000B12)	
0x002E	 4	 Number	of	colours	in	the	palette	(0x00000000)	
0x0032	 4	 Number	of	important	colours	-	generally	ignored	(0x00000000)	
Rest	of	data	
0x0036	 0x400	 Colour	palette	-	BB,GG,RR,0x00	for	each	of	the	256	colours	
[0xA]	 [0x22]	 Bitmap	raw	data.	Rows	are	padded	to	multiples	of	4	bytes.	
	 	 Each	byte	represents	a	colour	number	into	the	palette,	per	pixel.	
	 	 Row	0	is	the	bottom	of	the	image.	

Therefore,	in	order	to	reconstitute	a	bitmap,	you	will	need	to	supply	the	first	0x0436	
bytes	 of	 data,	 for	 each	 bitmap.	 You	 can	 easily	 see	 that	 the	 format	 expected	 is	
64x64px	at	8bpp.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	38	 22	December	2017	

	

Repton	The	Lost	Realms	
File	Layout	
BBC	 	 Electron	 Usage	
0x000000	 0x000000	 Screen	A	Data	
0x00029D	 0x00029D	 Screen	B	Data	
0x00053A	 0x00053A	 Screen	C	Data	
0x0007D7	 0x0007D7	 Screen	D	Data	
0x000A74	 0x000A74	 Screen	E	Data	
0x000D11	 0x000D11	 Screen	F	Data	
0x000FAE	 0x000FAE	 Character	Data	
0x002CAE	 0x001FFE	 EOF	

Encoding	
Four	characters	are	packed	into	3	bytes	by	only	using	bits	0	to	5	and	spreading	them	
across	the	3	bytes:	

Byte	0	 Byte	1	 Byte	2	
7	 6	 5	 4	 3	 2	 1	 0	 7	 6	 5	 4	 3	 2	 1	 0	 7	 6	 5	 4	 3	 2	 1	 0	

	
5	 4	 3	 2	 1	 0	 5	 4	 3	 2	 1	 0	 5	 4	 3	 2	 1	 0	 5	 4	 3	 2	 1	 0	
Character	1	 Character	2	 Character	3	 Character	4	

Screen	Data	
0x000	to	0x275	 Map	Data	(630	bytes)	30x28	–	packed	as	above	
0x276	to	0x27B	 Password	(8	characters	packed	into	6	bytes,	as	above)	
0x27C	to	0x293	 Transporter	Data	for	8	transporters,	6	bytes	each	packed	as	

above.	Stored	as	source	X,	Y,	destination	X,	Y.	The	source	X	of	
all	transporters	is	stored	in	the	first	6	bytes	(unpacked	to	8	co-	
ordinates),	then	the	source	Y,	etc.	

0x294	to	0x295	 Colour	Data,	4	bits	per	colour	(11110000	33332222)	
0x296	to	0x297	 Edit	Code	(LSB/MSB)	
0x298	to	0x299	 Bomb	Time	(LSB/MSB)	
0x29A	to	0x29B	 Freeze	time	(LSB/MSB)	
0x29C	bit	7	 	 Map	Visibility	
0x29C	bits	4	to	6	 Fungi	Rate	
0x29C	bits	0	to	3	 Absorbency	Rate	

Character	Data	
The	BBC	Micro	uses	7424	bytes	for	58	characters,	which	equates	to	128	bytes	each	
at	16x32	pixels	in	size.	The	Acorn	Electron	uses	4176	bytes	for	58	characters,	which	
equates	to	72	bytes	each	at	12x24	pixels	in	size.	Both	platforms	are	stored	as	MODE	
5	screen	data.	

	

Characters	
00	Boulder	 	 	 01	Diamond	 	 	 02	Earth	1	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	39	 22	December	2017	

	

03	Earth	2	 	 	 04	Time	Capsule	 	 05	Skull	
06	Blank	 	 	 07	Wall	 	 	 08	Wall	L	
09	Wall	R	 	 	 0A	Wall	T	 	 	 0B	Wall	B	
0C	Wall	TL	 	 	 0D	Wall	TR	 	 	 0E	Wall	BL	
0F	Wall	BR	 	 	 10	Wall	2	 	 	 11	Wall	2	TL	
12	Wall	2	TR	 	 	 13	Wall	2	BL	 	 	 14	Wall	2	BR	
15	Barrier	 	 	 16	Safe		 	 	 17	Cage	1	
18	Cage	2	 	 	 19	Door	 	 	 1A	Freeze	Pill	
1B	Balloon	 	 	 1C	Absorbency	Pill	 	 1D	Egg	
1E	Key		 	 	 1F	Fungus	 	 	 20	Time	bomb	
21	Transporter	 	 22	Crown	 	 	 23	Repton	
24	Spirit	1	 	 	 25	Spirit	2	 	 	 26	Spirit	1	frame	2	
27	Spirit	2	frame	2	 	 28	Repton	Die	1	 	 29	Repton	Die	2	
2A	Monster	 	 	 2B	Monster	frame	2	 	 2C	Monster	frame	3	
2D	Repton	looking	left	 2E	Repton	looking	right	 2F	Repton	Walking	R	1	
30	Repton	Walking	R	2	 31	Repton	Walking	R	3	 32	Repton	Walking	R	4	
33	Repton	Walking	L	1	 34	Repton	Walking	L	2	 35	Repton	Walking	L	3	
36	Repton	Walking	L	4	 37	Repton	Up	1	 	 38	Repton	up	2	
39	Egg	cracking	
	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	40	 22	December	2017	

	

Clones	and	Similar	Games:	Ripton	
Ripton,	which	was	a	clone	of	Repton,	was	written	by	Kenton	Price	and	submitted	to	
A&B	Computing	magazine.	However,	they	did	not	dare	publish	it.	These	days	it	can	
be	found	on	A&B	compilation	disc	images,	freely	available	on	the	web.	

Characters	
Full	size	(16x32px)	characters	(128	bytes	each)	
Like	BBC	Repton	3,	 the	 full	 size	characters	are	stored	complete,	 in	MODE	5	 format	
(see	page	8).	
File	 Offset	 Length	 Descripton	
RIPTON	 0x3600	 0x100	 Ripton	die	characters	(2)	
RIPTON	 0x3E00	 0x700	 Monster/Ripton/Broken	Eggs	(14)	
RIPTONB	 0x0000	 0x900	 Others	(18)	
Map	size	(8x4)	characters	(8	bytes	each)	
Again,	stored	complete	in	MODE	5	format.	
RIPTON1	 0x0F00	 0x2F0	 94	Text	characters	
	 0x11F0	 0x010	 2	blanks	
	 0x1200	 0x080	 16	map	characters	

Maps	
These	 are	 not	 encrypted	 in	 any	 way	 in	 Ripton,	 and	 only	 having	 16	 characters,	 it	
means	that	each	half	byte	can	be	used	for	each	character	position.	
File	 Offset	 Length	 Descripton	
RIPTON	 0x1E00	 0x1400	 32x32	characters	per	level,	
	 	 	 4	bits	per	char,	512	bytes	per	map	

Palette	
There	is	no	stored	palette	in	Ripton.	Instead,	it	is	calculated	depending	on	the	level	
number.		
File	 Offset	 Length	 Descripton	
RIPTON	 0x1BF8	 0x1C	 Code	to	change	palette.	
 Col=(level AND 3)+3; If Col=3 then Col=1

Passwords		
File	 Offset	 Length	 Descripton	
RIPTON	 0x3D00	 0xB0	 Passwords.	16	bytes	each,	in	screen	order	–	11	
	 	 	 passwords	(inc	one	for	screen	editor).	
	 	 	 1st	byte	XOR	2nd	byte	=	1st	chr	
	 	 	 Result	XOR	next	byte	=	next	chr	
	 	 	 0x0D	terminates	password	

Time	limits	
As	Repton,	the	time	limits	are	always	6000	(0x1770)	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	41	 22	December	2017	

	

Clones	and	Similar	Games:	HW	Repton	3	
There	 are	many	 clones	 of	 the	 various	 Repton	 games,	 written	 by	 others	 for	 other	
platforms	hereto	Superior	has	not	written	for.	Between	1998	and	2002,	Harry	Wood	
wrote	 and	 released	 such	 a	 clone	of	 Repton	3	 for	 the	PC.	 It	 has	 not	 been	updated	
since,	as	Superior	wrote	and	released	the	official	PC	versions	of	the	games.	You	can	
still	find	Harry’s	version	at	www.harrywood.co.uk/repton3.	

File	Status	
There	are	 two	states	of	 the	data	 files	–	one	 that	 is	being	edited,	and	one	 that	has	
been	locked.	The	first	four	bytes	of	the	file	will	indicate	which	state	the	file	is	in:	
Offset	 Length	 Description	
0x0000	 0x04	 EDIT	or	LOCK	
The	file	format	will	then	differ.	

EDIT	Format	
Each	 screen	 is	 held	 sequentially,	 and	 are	 0x3DC	 bytes	 in	 length.	 The	 data	 starts	
immediately	after	the	file	status	string.	For	all	bytes	read,	subtract	0x21	to	get	any	
meaningful	data.	
Offset	 Length	 Description	
0x0004	 7	 Password	
0x000B	 1	 Map	visible:	1=yes	
0x000C	 3	 Time	Limit	–	stored	as	three	characters:	100s,10s,1s	
0x000F	 0x3C1	 Map	-	31x31,	bottom	row	first	
0x03D0	 16	 Transporter	details,	4	bytes	each	(sx,sy,dx,dy)	x	4	
Total	file	size	will	be	7908	(0x1EE4)	bytes.	

LOCK	format	
A	 locked	 file	 is	 somewhat	 more	 complex,	 as	 it	 has	 been	 encoded	 with	 a	 lock	
password,	and	counter.	
Offset	 Length	 Description	
0x0004	 15	 Lock	Password	
0x0013	 1	 Counter	start	(byte	-	0x21)	
0x0014	 	 Start	of	map	data	

Lock	Password	
The	 lock	 password	 is	 held	 in	 15	 bytes,	 but	 only	 8	 of	 them	 are	 used.	 Bytes	
1,3,5,7,9,11,13	 contain	 the	 password	 characters	where	 the	 character	 ASCII	 code	 =	
(byte	-	(chr_pos	-	1))	+	1.	The	other	bytes	(0,2,4,6,8,10,12,14)	are	random,	and	can	
be	safely	disposed	of.	

LOCKed	Maps	
Each	 screen	 map	 is	 interlaced	 with	 each	 other,	 and	 the	 passwords,	 transporters,	
time	 limits	and	visible	 flag	are	 interlaced	with	 the	map	data.	Also,	 the	column	and	
row	 order	 is	 interlaced.	 In	 addition,	 it	 is	 encoded	 with	 the	 lock	 password	 and	 a	
counter.	
	
For	each	byte,	the	unencoded	byte	=	byte	-	0x21	-	p_encode	-	counter.	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	42	 22	December	2017	

	

• p_encode	 is	each	successive	password	character	ASCII	 (to	 the	 length	of	 the	
password,	then	reset	to	the	beginning),	where	60	is	taken	away	until	it	is	60	
or	under;	

• counter	is	0	to	9	inclusive,	counting	the	number	of	bytes	processed	(reset	to	
0	when	10	is	reached),	and	starts	with	value	at	0x0013	minus	0x21.	

In	addition,	 if	the	undecoded	byte	 is	 '5'	 (ASCII	0x35),	before	subtracting	0x21,	then	
following	byte	is	skipped.	
	
The	data	is	stored	in	this	order:	
row1,col31,scr1	
row1,col31,scr2	
to	
row1,col31,scr8	
row1,col30,scr1	
row1,col30,scr2	
and	then	to	
row1,col1,scr8	
	
Following	 the	 first	 row	 of	 each	 screen,	 the	 password,	 interlaced	 with	 transporter	
details	and	time	limit	are	stored:	
For	the	first	4	characters	of	the	password:	
pword_chr	
trans_sx	
trans_sy	
trans_dx	
trans_dy	
(remember,	as	the	map	is	‘bottom-up’,	that	the	y	co-ordinates	will	reflect	this)	
	
Then,	for	characters	5,6	and	7	of	the	password:	
pword_chr	
time_limit_chr	
	
And	then	finally	visible	flag.	The	data	then	continues,	in	a	similar	fashion	to	above:	
row2,col31,scr1	
to	
row31,col1,scr8	
without	password/transporter/time	limit/visible	details.	

Final	Notes	
Passwords	 are	 padded	 with	 ASCII	 32	 to	 either	 7	 (screen	 password)	 or	 8	 (lock	
password).	However,	these	spaces	are	skipped	on	the	encoding/decoding,	so	it	will	
depend	 on	 the	 length	 of	 the	 password	 up	 to	 the	 first	 SPACE.	 Transporter	 y	 co-
ordinates	are	as	map	is	laid	out	(i.e.	y=31-byte,	as	it	is	'bottom-up').	

Graphics	
The	game	graphics	are	held,	as	Bitmaps,	within	 the	Windows	executable	 file	 itself.	
Therefore,	you	can	either	create	your	own,	or	write	a	utility	to	extract	them.	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	43	 22	December	2017	

	

Clones	and	Similar	Games:	Bonecruncher	
This	 was	 produced	 using	 information	 published	 by	 David	 Boddie,	 and	 then	
investigated	 further	 by	 Gerald	 Holdsworth.	 So	 far,	 this	 document	 only	 covers	 the	
BBC	Micro	and	Acorn	Electron	versions,	which	are	fairly	similar.	

BONE2/BONE_2	
The	following	refers	to	the	files	BONE2	on	the	BBC	Micro	disc	version	(also	Master	
Compact	and	Play	It	Again	Sam	disc	version),	and	BONE_2	(Acorn	Electron	version).	
Offset	 Length	 Usage	
0x0000	 0x1400	 Sprites	-	40	off,	0x80	bytes	each,	16x32px,	MODE5	format	
0x1400	 	 Code	
0x14C9	 	 Unknown	
0x15F7	 0x0016	 Map	tile	to	sprite	lookup	table	-	BBC	Micro	
0x164E	 0x0016	 Map	tile	to	sprite	lookup	table	-	Acorn	Electron	
0x1???	 	 Code,	including:	
0x1727	 	 Number	of	lives	(stored	at	&0A)	-	BBC	Micro	
0x173F	 	 Soaps	required	to	complete	level	(stored	at	&05)	-	BBC	Micro	
0x1774	 	 Number	of	lives	(stored	at	&0A)	-	Acorn	Electron	
0x178C	 	 Soaps	required	to	complete	level	(stored	at	&05)	-	Electron	
0x17C3	 	 Invulnerability	(code	reduces	value	at	&0E	by	1)	-	BBC	Micro	
0x1809	 	 Invulnerability	(code	reduces	value	at	&0E	by	1)	-	Electron	
0x1853	 	 Infinite	Lives	(code	reduces	value	at	&0A	by	1)	-	BBC	Micro	
0x189A	 	 Infinite	Lives	(code	reduces	value	at	&0A	by	1)	-	Acorn	Electron	
0x1CD0	 	 Fozzy	Infinite	energy	(code	reduces	value	at	&08	by	1)	-	BBC	
0x1CF7	 	 Fozzy	Infinite	energy	(code	reduces	value	at	&08	by	1)-Electron	
0x1E31	 0x0010	 Animation	sequences	-	4	bytes	each	for	Glook,	Monster,	Spider	
	 	 and	Fozzy	-	BBC	Micro	
0x1E58	 0x0010	 Animation	sequences	-	4	bytes	each	for	Glook,	Monster,	Spider	
	 	 and	Fozzy	-	Acorn	Electron	
0x1FAD	 0x0004	 Bono	walking	right	animation	sequence	-	BBC	Micro	
0x1FB1	 0x0004	 Bono	walking	left	animation	sequence	-	BBC	Micro	
0x1FB5	 0x0002	 Bono	walking	up/down	animation	sequence	-	BBC	Micro	
0x1FD3	 0x0004	 Bono	walking	right	animation	sequence	-	Acorn	Electron	
0x1FD7	 0x0004	 Bono	walking	left	animation	sequence	-	Acorn	Electron	
0x1FDB	 0x0002	 Bono	walking	up/down	animation	sequence	-	Acorn	Electron	
0x206F	 	 Code	
0x20D2	 	 LOAD":0.$.SCREEN1"3300	[0x0D]	-	BBC	Micro	
0x20E9	 	 DISK	[0x0D]	-	BBC	Micro	
0x20EE	 	 Data	
0x2110	 	 Code	
0x22B8	 	 Unknown	
0x22??	 	 Code	
0x22FB	 	 Unknown	
0x2408	 0x00F8	 Passwords,	in	reverse	level	order,	each	terminated	with	0xFF.	
	 	 Add	0x55	to	reveal	ASCII,	or	0x40=SPC	
0x2500	 0x0C00	 Maps	storage	area	for	6	levels	(SCREEN1,	2,	3	and	4	are	loaded	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	44	 22	December	2017	

	

	 	 here).	0x200	bytes	per	level	
0x3100	 0x1F40	 Playing	screen	
0x5040	 	 Code	
0x50D8	 0x0370	 Monster	with	soap	screen	–	BBC	Micro	
0x5290	 	 LOAD	:0.$.Screen1	3300	[0x0D]	-	Acorn	Electron	
0x52A7	 	 DISC	[0x0D]	-	Acorn	Electron	
0x5448	 	 Unknown	
0x587C	 	 Code	
0x5900	 0x0040	 Data	-	gets	moved	to	&60	
0x5940	 0x0020	 Data	-	gets	moved	to	&180	
0x5960	 0x0100	 Data	-	gets	moved	to	&300	
0x5980	 0x0100	 Data	-	gets	moved	to	&880	
0x5A80	 	 Unknown	
0x5AE0	 	 Code	
0x5B8D	 	 Data	

SCREENx	
Where	x	is	1=levels	1	to	6,	2=levels	7	to	12,	3=levels	13	to	18,	4=levels	19	to	24.	

Each	row	is	at	least	20	bytes	in	length,	with	each	four	bits	representing	a	tile	in	the	
map,	the	lower	four	bits	appearing	on	the	left	and	the	upper	four	bits	on	the	right.	
Each	special	tile	requires	an	additional	half	byte,	so	rows	with	special	tiles	are	longer	
than	20	bytes	in	length.	

Map	size	is	40x25	tiles,	but	each	map	is	padded	out	with	zeros	to	0x200	bytes,	with	
the	final	byte	being	the	actual	colour	number	(3	bits	-	BGR)	of	the	map.	

Tile	definitions:	
0x0:	 Space	 	 	 	 0x1:	 Horizontal	wall	
0x2:	 Vertical	wall	 	 	 0x3:	 Corner	wall	
0x4:	 Cauldron	 	 	 0x5:	 Door/gate	
0x6:	 Key	 	 	 	 0x7:	 Earth	
0x8:	 Trapdoor	 	 	 0x9:	 Sea	
0xA:	 Glook	 	 	 	 0xB:	 Skeleton	
0xC:	 Monster	 	 	 0xD:	 Spider	
0xE:	 Space	(unknown/unused)	
0xF:	 Special	tile	-	these	are	always	followed	by	another	value	which	determines	

which	special	tile	is	used:	
	 0x0:	 Fozzy	 	 	 0x1:	 Rightward	stairs	
	 0x2:	 Leftward	stairs	 0x3:	 Upward	stairs	
	 0x4:	 Downward	stairs	 0x5:	 Bono	
	 0x6:	 Volcano	 	 0x7:	 Unused	

Sprite	order	
This	 is	 the	 order	 the	 sprites	 appear	 at	 the	 beginning	 of	 BONE2	 (BBC)	 or	 BONE_2	
(Electron):	
0x01	 Horizontal	Wall	 0x02	 Vertical	Wall	 	 0x03	 Corner	Wall	
0x04	 Sea	 	 	 0x05	 Cauldron	 	 0x06	 Rightward	Stairs	
0x07	 Leftward	Stairs	 0x08	 Upward	Stairs		 0x09	 Downward	Stairs	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	45	 22	December	2017	

	

0x0A	 Gate	 	 	 0x0B	 Key	 	 	 0x0C	 Trapdoor	
0x0D	 Earth	 	 	 0x0E	 Skeleton	1	 	 0x0F	 Skeleton	2	
0x10	 Glook	1	 	 0x11	 Glook	2	 	 0x12	 Glook	3	
0x13	 Monster	standing	 0x14	 Monster	1	 	 0x15	 Monster	2	
0x16	 Spider	1	 	 0x17	 Spider	2	 	 0x18	 Fozzy	standing	
0x19	 Fozzy	1		 	 0x1A	 Fozzy	2		 	 0x1B	 Bono	dead	
0x1C	 Bono	walking	right	1	 0x1D	 Bono	walking	right	2	 0x1E	 Bono	walking	r	3	
0x1F	 Bono	walking	left	1	 0x20	 Bono	walking	left	2	 0x21	 Bono	walking	l	3	
0x22	 Bono	Up/Down	1	 0x23	 Bono	Up/Down	2	 0x24	 Bono	Yawn	
0x25	 Bono	Sleepy	 	 0x26	 Bono	Winking	 	 0x27	 Bono	hand	up	
0x28	 Bono	Standing	

Map	tile	to	sprite	Lookup	Table	
This	 is	a	 lookup	 table	 to	 find	 the	correct	 sprite	 from	the	map	 tile	byte,	 i.e.	a	 table	
that	translates	one	table	above	to	the	other.	This	can	be	found	at	0x15F7	in	BONE2	
(BBC)	or	0x164E	in	BONE_2	(Acorn	Electron).	

For	 the	 special	 tiles	 (type	 0xF,	 followed	 by	 a	 second	 half	 byte),	 just	 add	 the	 two	
together	(e.g.	Fozzy	is	0xF+0x0=0x0F,	Bono	is	0xF+0x5=0x14,	etc.).	Bits	5-7	(0x80	to	
0xB0)	refer	to	an	animated	sprite.	The	animation	sequences	can	be	found	at	offset	
0x1E31	in	BONE2	(BBC	Micro)	or	0x1E58	in	BONE_2	(Acorn	Electron)	and	are	4	bytes	
each	(each	byte	is	a	frame,	and	references	the	sprites).	

NOTE:	The	lookup	table	translates	Bono’s	character	(0x14)	to	a	Skeleton	(0x0F),	and	
a	volcano	(0x15)	to	Earth	(0x0D).	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	46	 22	December	2017	

	

Useful	Programs	
In	this	section	I	present	some	BBC	BASIC	programs	that	you	may	find	useful.	

Archimedes	and	Desktop	Repton	3	Decoder	
This	 will	 iterate	 through	 the	 specified	 directory	 structure	 looking	 for	 Archimedes	
Repton	 3	 or	 High	 Res	 Desktop	 Repton	 3	 files.	 Once	 found,	 it	 will	 open	 them	 and	
output	the	passwords	and	edit	codes	into	a	text	file.	
REM>Editcodes
REM
REM Archimedes Repton 3 and Desktop Repton 3 file decoder
REM written by Gerald Holdsworth
REM (c)2013 GJH Software
REM
REM V1.10 16th December 2013
REM
REM This will open all AR3 and DR3 files found in the specified
REM directory and sub directories, open them and display the passwords
REM and edit codes for all the levels.
REM
ONERRORREPORT:PRINT" at line ";ERL:CLOSE#0:END
CLOSE#0
DIM data 130000,data% 512,typebuf% 10
typebuf%?8=13
VDU26,12
PRINT "Archimedes Repton 3 and Desktop Repton 3 password and edit code decoder"
PRINT "written by Gerald J Holdsworth (c)2013 GJH Software"
PRINT "V1.10 17th December 2013"
PRINT
SYS"OS_GBPB",6,,data%
curdir$=FNgetname(data%+2)
REPEAT
 PRINT"Base directory: ";:X=POS:Y=VPOS
 PRINTTAB(X,Y)curdir$
 INPUTTAB(X,Y)""dir$
 IF dir$="" dir$=curdir$
 SYS"XOS_File",5,dir$ TO type%
 IF type%=0 PRINT"Error: "dir$" cannot be found"
 IF type%=1 PRINT"Error: "dir$" is a file"
 IF type%=3 PRINT"Error: "dir$" is an image"
 IF type%>3 PRINT"Error: "dir$" is not a valid path"
UNTIL type%=2
REPEAT
 PRINT"Output directory: ";:X=POS:Y=VPOS
 PRINTTAB(X,Y)dir$
 INPUTTAB(X,Y)""output$
 IF output$="" output$=dir$
 SYS"XOS_File",5,output$ TO type%
 IF type%=0 PRINT"Error: "output$" cannot be found"
 IF type%=1 PRINT"Error: "output$" is a file"
 IF type%=3 PRINT"Error: "output$" is an image"
 IF type%>3 PRINT"Error: "output$" is not a valid path"
UNTIL type%=2
output%=OPENOUT(output$+".R3editcode")
PROCexamine(dir$)
CLOSE#output%
OSCLI"SETTYPE "+output$+".R3editcode Text"
END
:
DEF PROCwriteln(file%,line$)
LOCAL i
line$=line$+CHR$10
FOR i=1 TO LEN(line$)
 BPUT#file%,ASC(MID$(line$,i,1))
NEXT
ENDPROC
:
DEF PROCexamine(dir$)
LOCAL next%,number%,F$,screen,code,password$,x,ptr,m%,chr,P%,Q%
next%=0
WHILE next%<>-1

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	47	 22	December	2017	

	

 SYS "OS_GBPB",10,dir$,data%,1,next%,63,"*" TO,,,number%,next%
 IF number%>0 THEN
 F$=FNgetname(data%+&14)
 IF data%!16=2 THEN
 PROCexamine(dir$+"."+F$)
 ELSE
 IF (!data% >>> 20)=&FFF AND (data%!8=28832 OR data%!8=102560) THEN
 X=POS:Y=VPOS
 PRINTTAB(X,Y)dir$"."F$" ";TAB(X,Y);
 IF data%!8=28832 PROCwriteln(output%,dir$+"."+F$+" (Archimedes Repton 3/Desktop
Repton 3 Low Res)")
 IF data%!8=102560 PROCwriteln(output%,dir$+"."+F$+" (Desktop Repton 3 High Res)")
 SYS"OS_File",12,dir$+"."+F$,data
 FOR screen=0 TO 7
 code=0
 password$=""
 FOR x=0 TO 419
 ptr=&380+(screen*420)+x
 IF (data?ptr AND 4) THEN code=code+(data?ptr*2) ELSE code=code+data?ptr
 NEXT
 P%=&380+(screen*420)
 IF data%!8=28832 THEN Q%=47:P%+=47 ELSE Q%=46:P%+=44
 ptr=screen*8
 m%=0
 REPEAT
 chr=(data?(ptr+m%) EOR data?P%) AND &1F OR 64
 P%+=Q%
 IF chr>13 THEN chr=chr AND &DF
 IF chr>64 AND chr<128 THEN password$+=CHR$chr
 m%+=1
 UNTIL m%=7 OR chr<65
 PROCwriteln(output%,"Screen "+CHR$(65+screen)+": "+STR$code+" "+password$)
 NEXT
 ENDIF
 ENDIF
 ENDIF
ENDWHILE
ENDPROC
:
DEF FNgetname(addr%)
LOCAL b$
WHILE ?addr%>31
 b$+=CHR$(?addr%)
 addr%+=1
ENDWHILE
=b$

HW	Repton	3	Decoder	
This	is	a	program,	for	RISC	OS,	to	read	in	and	decode	the	data	files	from	HW	Repton	
3,	presented	here	to	assist	with	dealing	with	these	files.	
REM>Decode
REM
REM Harry Wood Repton 3 file decoder
REM written by Gerald Holdsworth
REM (c)2016 GJH Software
REM
REM V1.00 18th March 2016
REM
REM This will open the specified file, in the specified directory
REM and display all the details about the file, including the raw
REM map data for all the levels.
REM
ONERRORREPORT:PRINT" at line ";ERL:END
REM Change this to point this towards your directory
dir$="HostFS:$.Data.ReptonFile.Repton3."
REM Change this for the file within that directory
file$="Main/rls"
SYS"OS_File",13,file$,,,dir$ TO ,,,,length%
DIM data% length%
SYS"OS_File",12,file$,data%,0,dir$
VDU26,12
PRINT" File: "file$
s$=CHR$(data%?0)+CHR$(data%?1)+CHR$(data%?2)+CHR$(data%?3)
PRINT" File status: "s$

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	48	 22	December	2017	

	

p$=""
ctr%=0
pe%=0
b%=32
DIM
pword$(8),time%(8),t_sx%(8,4),t_sy%(8,4),t_dx%(8,4),t_dy%(8,4),map%(8,32,32),vis%(8)
IFs$="EDIT"THEN
 ptr%=&4
 FORm%=1TO8
 pword$(m%)=""
 FORc%=1TO7
 ue%=FNgetbyte
 IFue%<>32pword$(m%)+=FNc(ue%)
 NEXT
 vis%(m%)=FNgetbyte=1
 time%(m%)=(100*FNgetbyte)+(10*FNgetbyte)+FNgetbyte
 FORy%=1TO31
 FORx%=1TO31
 map%(m%,x%,32-y%)=FNgetbyte
 NEXT
 NEXT
 FORc%=1TO4
 PROCtrans(m%,c%)
 NEXT
 NEXT
ENDIF
IFs$="LOCK"THEN
 FORi%=0 TO 7
 b%=?(data%+5+(i%*2))
 b%=(b%-i%)+1
 IFb%<>32p$+=FNc(b%)
 NEXT
 PRINT"Lock Password: "p$
 ptr%=&13
 ctr%=(data%?ptr%)-&21
 ptr%+=1
 FORx%=1TO31
 FORy%=1TO31
 FORm%=1TO8
 map%(m%,x%,32-y%)=FNgetbyte
 NEXT
 NEXT
 m%=x%
 IFm%<9THEN
 pword$(m%)=""
 time%(m%)=0
 FORc%=1TO7
 ue%=FNgetbyte
 IFue%<>32pword$(m%)+=FNc(ue%)
 IFc%<5PROCtrans(m%,c%)
 IFc%=5time%(m%)+=100*FNgetbyte
 IFc%=6time%(m%)+=10*FNgetbyte
 IFc%=7time%(m%)+=FNgetbyte
 NEXT
 vis%(m%)=FNgetbyte=1
 ENDIF
 NEXT
ENDIF
FORm%=1TO8
 PRINTSTRING$(93,"-")
 PRINT" Screen: ";m%
 PRINT"Screen password: "pword$(m%)
 PRINT" Screen time: ";time%(m%)
 PRINT" Transporters: ";
 FORc%=1 TO 4
 IFFNvaltrans(m%,c%)PRINT;t_sx%(m%,c%)+1;",";t_sy%(m%,c%)+1;" to
";t_dx%(m%,c%)+1;",";t_dy%(m%,c%)+1'STRING$(17," ");
 NEXT
 PRINTSTRING$(17,CHR$127);" Is map visible: ";
 IFvis%(m%)PRINT"Yes"ELSEPRINT"No"
 PRINT" Map:"
 FOR r%=1 TO 31
 FOR c%=1 TO 31
 PRINTFNzero(map%(m%,c%,r%))" ";
 NEXT
 PRINT
 NEXT

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	49	 22	December	2017	

	

 IFm%<8THEN
 PRINT"Press SPACE for next map...";
 REPEATUNTILINKEY-99:REPEATUNTILNOTINKEY-99
 PRINTSTRING$(27,CHR$127);
 ENDIF
NEXT
:
END
:
DEFFNc(c%)
IFc%<32ORc%>126c%=32
=CHR$c%
:
DEFFNgetbyte
LOCALue%,p_encode%
ue%=?(data%+ptr%)
ptr%+=1
p_encode=0
IFp$<>""THEN
 IFue%=&35ptr%+=1
 pe%+=1:IFpe%>LENp$pe%=1
 p_encode%=ASCMID$(p$,pe%,1)
 WHILEp_encode%>60:p_encode%-=60:ENDWHILE
 ctr%=(ctr%+1)MOD10
ENDIF
=ue%-&21-p_encode%-ctr%
:
DEFFNzero(x%)=RIGHT$("0"+STR$~(x%),2)
:
DEFFNvaltrans(m%,c%)
LOCALv%
v%=TRUE
IFt_sx%(m%,c%)<0ORt_sx%(m%,c%)>30v%=FALSE
IFt_sy%(m%,c%)<0ORt_sy%(m%,c%)>30v%=FALSE
IFt_dx%(m%,c%)<0ORt_dx%(m%,c%)>30v%=FALSE
IFt_dy%(m%,c%)<0ORt_dy%(m%,c%)>30v%=FALSE
IFv%IFmap%(m%,t_sx%(m%,c%)+1,t_sy%(m%,c%)+1)<>&0Av%=FALSE
=v%
:
DEFPROCtrans(m%,c%)
t_sx%(m%,c%)=FNgetbyte
t_sy%(m%,c%)=30-FNgetbyte
t_dx%(m%,c%)=FNgetbyte
t_dy%(m%,c%)=30-FNgetbyte
ENDPROC

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	50	 22	December	2017	

	

Acknowledgements	
The	 information	 in	 this	 document	 was	 gathered	 from	 various	 sources,	 and	 the	
following	people	are	directly	credited	for	their	work:	
	
BBC/Electron	Repton	and	Repton	2	:	Jasper	Renow-Clarke	
BBC/Electron	Repton	3:	Neil	Crutchlow	and	Jonathan	Marten	
Sinclair	Repton	and	Repton	2	:	Gerald	Holdsworth	and	Gil	Jaysmith	
Commodore	Repton	3	:	Gerald	Holdsworth	
Desktop	Repton	(all)	:	Jasper	Renow-Clarke,	Gerald	Holdsworth	and	Darren	Salt	
Archimedes	Repton	and	Repton	2	:	Jasper	Renow-Clarke	and	Gerald	Holdsworth	
BBC/Electron	Repton	Infinity	:	David	Lodge	
EGO:	Repton	4	:	Gerald	Holdsworth	and	Kris	Adcock	
Harry	Wood’s	Repton	3	:	Gerald	Holdsworth	
BBC/Electron	Bonecruncher	:	David	Boddie	and	Gerald	Holdsworth	
BBC	Ripton	:	Gerald	Holdsworth	
PC	Repton	3	(graphics)	:	Gerald	Holdsworth	
	
Also,	many	 thanks	 go	 to	 Richard	Hanson	 (Superior	 Interactive)	 and	 Tim	 Ellert	 (ESZ	
Consulting)	 for	all	of	 their,	 continuing,	help	and	also	 to	David	Boddie	 for	his	 tip	of	
loading	files	into	the	screen	memory	on	a	BBC	to	find	the	location	of	the	graphics.	
	
	 	

Decoding	Repton	

Compiled	by	Gerald	J	Holdsworth	 Page	51	 22	December	2017	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Decoding	Repton	compiled	by	and	©2017	Gerald	J	Holdsworth	

Help	with	the	Repton	formats	from	Neil	Crutchlow,	Jonathan	Marten,	Jasper	Renow-Clarke,	Darren	Salt,	David	Boddie,	Gil	
Jaysmith,	Tim	Ellert,	Kris	Adcock	and	David	Lodge	

Repton	remains	©Superior	Software	Ltd/Superior	Interactive	www.superiorinteractive.com	

www.reptonresourcepage.co.uk	

